Detection of Gravitational Waves: A New Window to the Universe

Yoichi Aso Columbia University, Experimental Gravity Group Jul. 25th 2007 @ Nevis REU talk

What is Gravitational Wave?

- Ripples of spacetime
- Propagate at the speed of light
- Generated by non-spherical motion of heavy masses

Theoretical prediction 1916 by A. Einstein

Perturbation of metric tensor $g_{\mu\nu}$ Einstein equation: $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$

Properties of Gravitational Waves

Generation: Variation of quadruple moment of mass distribution Two polarizations (spin=2)

Extremely weak interaction with matters

$$G_{\mu\nu} = \frac{8\pi G}{\sqrt[4]{4}} T_{\mu\nu} \qquad \text{Mass/Energy (Source)}$$
 Curvature
$$Coupling constant \sim 10^{-43}$$

No detection so far

Sources of Gravitational Waves

Detectable Gravitational Waves: Impossible to generate on the Earth

Violent Astronomical Events

- Coalescence of Binary Neutron stars / Black holes
- Black hole ringdown
- Super Novae
- · Pulsars
- Stochastic Background GWs

How do we detect it?

How do we detect it?

How do we detect it?

Differential change in the arm lengths

Effect of GW is extremely weak

Typical Event

Change by the diameter of a hydrogen atom

Why do we bother to look for gravitational waves?

A NEW WINDOW ON THE UNIVERSE

Electro-Magnetic Wave Observations

New wavelength

Discoveries

Gravitational Waves: Totally New (not even EMW)

EM	GW
Motion of charged	Coherent motion of
particles	huge masses
Wavelength < source	Wavelength > source
size (imageable)	size (no image)
Absorbed, scattered,	Almost no absorp-
by matter	tion, scattering
10MHz and up	10kHz and down

Compact Binary Coalescences

Neutron star - Neutron star, Black hole - Neutron star, Black hole - Black hole

Chirp signal

Insprial Phase

Analytic template (Post-Newtonian expansion) Matched filtering search

Merger Phase (Highly Relativistic): Numerical Simulations (Numerical Relativity)

Merger of 1.4-1.4 Solar Mass Binary Neutron Stars

Simulation by M. Shibata (University of Tokyo)

Black hole ringdown

- Radiation from black hole perturbation
- Quasi-normal modes
- Determine: Spin, Mass

Supernova

- Non-axisymmetric core collapse
- Waveform not well modeled
- Optical/Neutrino coincidence

Pulsars

- Asymmetry in rapidly rotating neutron stars
- Continuous wave
- Improvement of SNR by integration
- Extract information of the equation of state

Crab pulsar

Stochastic background GW

Cosmological Sources

- Inflation
- Cosmic string
- Cosmic phase transition
- Reheating

GWs generated before CMB era Information not available with photons

Detection strategy
Correlation between multiple detectors

Einstein's Theory of General Relativity

experimental tests

All theories must be experimentally tested

Sir Eddington's expedition

Perihelion precession

Gravitational lensing

Test in the weak curvature

Gravitational Waves:

Generated in the strongly curved spacetime e.g. in the vicinity of Black holes

Highly non-linear effect of GR becomes apparent

A good test of GR
Discrimination from alternative gravity theories

Indirect evidence of gravitational radiation

Taylor

Radio pulsar B1913+16

Periodic modulation

→ Binary neutron star

GW emission

Orbital decay

Perfect matching with the GR prediction

Nobel Prize in Physics, 1993

Efforts for Gravitational Wave Detection

First Attempt
 Joseph Weber in 1960's
 at University of Maryland

Resonant Bar Detector Weber Event

Since then 19 bar detectors have been built in 8 countries

Transition

Resonant detectors — Interferometers

Robert L. Forward: The first interferometric GW detector in 1970's

Several prototype interferometers around the world

Garching, Glasgow, Caltech, Tokyo ...

Global network of detectors

(interferometers)

Operating detectors: Yellow, Planned detectors: Blue

LIGO

(Laser Interferometer Gravitationalwave Observatory)

Hanford, Washington 4km and 2km interferometer in the same vacuum system

Livingston, Louisiana 4km interferometer

Noise History

GEO600

British-German Collaboration

600m Folded Michelson Interferometer with a Signal Recycling Mirror

Located near Hannover, Germany

Virgo

French-Italian Collaboration 3km Recycled Fabry-Perot Michelson interferometer Located near Pisa, Italy

TAMA300

- Japanese project
- •300m Recycled Fabry-Perot Michelson interferometer
- •The first large scale interferometer started operation
- Located at National Astronomical Observatory in Tokyo

CLIO

- Cryogenic prototype interferometer (100m)
- Located underground in Kamioka mine (near SK)
- Comparable sensitivity with LIGO around 20Hz

Technical Challenges of Interferometers

Interferometer Scheme

Fabry-Perot Michelson Interferometer

Interferometer Scheme

Power Recycling

Higher laser power Smaller shot noise

Interferometer Scheme

Resonant Sideband Extraction

Higher finesse arm cavities Retain bandwidth Reduce the light power at BS Smaller thermal lensing **PRM** BS Laser SEM PD

Control System

5 degrees of freedom to control with extremely high precision

Suspension System

- Seismic vibration ~ 1 micro meter
- Isolate mirrors from ground
- Above pendulum resonant frequency
 Mirrors
 Free Mass

Simple pendulum Vibration isolator above its resonant frequency

Required attenuation ~ 10 orders of magnitude
Multiple pendulums
Low-frequency vertical springs
Active / Passive damping
Actuators for controlling mirrors

Thermal Noise

Thermal vibration of the molecules of mirror / suspension material

Fluctuation Dissipation Theorem

High quality mirror substrate / coating materials (not only optically)

Low mechanical loss suspension fibers Fused silica fibers with silica bonding

Go to Cryogenic

- LCGT cooled down to 20K
- Sapphire mirrors / fibers
- Ultra low mechanical loss at low temperature

Fused silica mirror

Laser

Shot Noise: Photon number fluctuation

Larger laser power

Less significant

Requirements

- High power (over 100W)
- Ultra stable in amplitude and frequency
- Good mode shape (TEM00 Gaussian beam)

- •MOPA
- Injection Locked laser
- Coherent addition
- Fiber amplifier
- •etc...

LIGO Pre-Stabilized Laser

Beating the Standard Quantum Limit

Heisenberg's uncertainty principle

$$\Delta x \Delta p \ge \hbar/2$$

Measurement uncertainty = Shot Noise Measurement back action = Radiation Pressure

Free mass SQL
$$h_{\text{SQL}} = \frac{1}{L \omega} \sqrt{\frac{8 \hbar}{m}}$$

Quantum Non-Demolition Measurement

Squeezed light: non-classical state of light

One quadrature is less fluctuating than the other

Ponderomotive squeezing

Future Detectors

Enhanced & Advanced LIGO

Enhanced LIGO

- Some upgrades to Initial LIGO before going to Advanced LIGO
- Upgrade work start from this fall for 2 years
- factor of 2 improvement in sensitivity

Advanced LIGO

- Take advantage of new technologies and on-going R&D
 - Active anti-seismic system operating to lower frequencies
 - Lower thermal noise suspensions and optics
 - Higher laser power
 - More sensitive and more flexible optical configuration

x10 better amplitude sensitivity
x1000 rate=(reach)³
1 day of Advanced LIGO
» 1 year of Initial LIGO!

Planned for FY2008 start, Installation beginning 2011

Advanced LIGO Sensitivity and Sources

LCGT

(Large-scale Cryogenic Gravitational wave Telescope)

- Japanese next-generation interferometer project
- Cryogenic mirrors for thermal noise reduction
- 3km arm length
- Underground location (smaller seismic activity)

AIGO

- Space Interferometer
- Three space crafts
- •5 million km arm length
- •Ultra-low frequency GWs (1mHz 10mHz)
- · ESA & NASA

Targets

Galactic Binaries
Collision of massive black holes
Compact objects falling into black holes
Stochastic background GWs

DECIGO

- Japanese space interferometer project
- •10000 km Fabry-Perot arms
- •Fill the gap between LISA and the ground interferometers
- •(100mHz region)

Conclusion

Gravitational Waves: Open a unique new window to the universe

Information unavailable with electro-magnetic waves Neutron star EOS, Black hole spin, metric etc ...

New Astrophysics !!

Gravitational Wave Detectors

Several detectors in operation around the world LIGO will soon finish a long science run Maybe detection?

Next Generation Detectors

Enhanced LIGO, Advanced LIGO LCGT

Space interferometer LISA

Stay tuned !!