

Overview, and AdvLIGO charging susceptibilities

David Shoemaker
Charging Workshop MIT July 2007

LIGO

- Infrastructure to support gravitational wave astronomy
- Initial Detector installed, observing; one year integrated data set at design sensitivity achieved last week

- Data analyzed for signals; none found to date, but best data not yet analyzed
 - » Interesting upper limits placed on stochastic background, Crab pulsar, signals in coincidence with GRBs, etc.
- Will observe until one year of triple coincidence, roughly Oct 2007
 - » Observing with GEO600, Virgo

Enhanced LIGO = ELI

jective: use the time between end of initial and start of Advanced LIGO installation

to

- » Do more astrophysics
- » Exercise Advanced LIGO subsystems
- Increased laser power, more robust thermal compensation, DC strain readout, use of AdvLIGO seismic isolation
- Changes to 'earthquake stops' to reduce charge transfer
- No other baseline plans for suspension changes...but if we were to change something....
 - » Magnet changes to reduce upconversion
 - » Changes in wire standoffs to decrease suspension thermal noise

Advanced LIGO

- Objective: start GW astronomy
 - » Status: in NSF and OMB, and now appropriation committee plans
- Factor 10 broad-band sensitivity improvement
- Wholesale change of detector, electronics, cabling; reuse of vacuum tubes, buildings
- Low-frequency wall from 40 to 10 Hz
 - » This is very demanding due to increases in stochastic forces at lower frequencies
- Much improved seismic noise → consider it negligible
- Thermal noise, quantum noise, gravitational gradient noise sure to limit performance
-and perhaps also forces due to migrating charges

2007 2008 2009 2010 2011 2012 2013 2014 2015 **ELI INST/COMM** AdL COMMISSION **S7** S₅ **S6** AdL INSTALL G07)-R

ACTIVE THERMAL

CORRECTION

PRM

T~6%

SRM

PD

BS

125W

CLEANER

MOD.

180 W LASER,

LASER

BS

FTM

SRM

PD

MODULATION SYSTEM

Power Recycling Mirror

Signal Recycling Mirror

Beam Splitter Input Test Mass End Test Mass

Photodiode

From Norna: Test Mass Quadruple Pendulum Suspension

Key Design features

- » Monolithic final stage: 40 kg fused silica mirror (34 cm diam x 20cm) on 4 fused silica ribbons (600mm x 1.1mm x 0.11 mm) for good thermal noise performance
- 4 stages for longitudinal seismic isolation plus 3 stages of blades for vertical isolation
- » 6 degree of freedom damping (local control) at top mass for all low frequency modes (requires good mode coupling)
- » Parallel reaction chain for quiet global control actuation: electrostatic (ESD) at test mass, electromagnetic at upper stages (hierarchical)

Major noise requirements

Suspension thermal noise 10^-19 m /√ Hz @ 10 Hz

Residual seismic noise 10^-19 m /√ Hz @ 10 Hz

Test Mass Quadruple Pendulum Suspension continued

Test Mass Quadruple Pendulum Suspension continued

Development work on monolithic assembly techniques at Glasgow

CO₂ ribbon puller/welder

Preparing ribbon for pulling

Prism strength testing

Ear bonding fixtures

Prototype quad at Rutherford Appleton Lab

Core Optics/Coatings

- Full sized Optic for integration testing
 - » Coated by LMA; now being characterized
 - » Looks like a good, low-loss coating
- To be joined to the UK soon to the quad suspension, installed at LASTI on the BSC Seismic Isolation
- Front face HR coating
- Back face AR coating
- Reaction mass same size, fused silica
 - » Front face gold pattern

Physical Quantity	
Diameter of substrate,φs (cm)	31.4
Substrate Thickness, ds (cm)	13
1 ppm intensity contour diameter (cm)	31.5
Lowest internal mode frequency (kHz)	9.35
Weight of Suspended Component (kg)	40 ⁹

Charge-related Worries

- Interaction between test mass and reaction mass
 - » Coated silica faces
 - » Gold electrostatic actuator surface
 - DC vs RF excitation
- Interaction between test mass and frame
- Gold coating on barrel (thin)
 - » To reduce emissivity on sides for thermal compensation
 - » Damps some test mass modes: less risk of parametric instabilities, slight increase in thermal noise
 - » A conductive coating....
- Cosmic rays
- Anything strange with either laser-beam heating or thermal compensation heating