GRB Searches with X-PIPELINE

Michał Wąs¹ Patrick Sutton²

¹École Normale Supérieure

²Cardiff

August 3, 2007

Michał Wąs , Patrick Sutton ()

Burst F2F G070488-00-Z

- Coherent detection statistics and veto
- X-Pipeline and triggered searches
- Test analysis of 9 GRBs

N detectors, N dimensional space

$$\begin{bmatrix} d_{1} \\ \vdots \\ d_{N} \end{bmatrix} = \begin{bmatrix} F_{1}^{+}/\sigma_{1} \\ \vdots \\ F_{N}^{+}/\sigma_{N} \end{bmatrix} h_{+} + \begin{bmatrix} F_{1}^{\times}/\sigma_{1} \\ \vdots \\ F_{N}^{\times}/\sigma_{N} \end{bmatrix} h_{\times} + \begin{bmatrix} n_{1} \\ \vdots \\ n_{N} \end{bmatrix}$$

- given time-frequency pixel
- time shifted according to GRB sky postion
- GW affect only 2 out of *N* dimensions

$$\mathbf{d} = \mathbf{F}_{+}^{w} h_{+} + \mathbf{F}_{\times}^{w} h_{\times} + \mathbf{n}$$

d – vector of whitened data at a given time/frequency, time shifted according to GRB sky postion

Dominant Polarization frame a convenient network basis

Two dimensional plane spanned on $\textbf{F}_{+},\,\textbf{F}_{\times}$ (H1L1V1 network)

Likelihoods for gaussian noise

$$L = \frac{P(\mathbf{d}|\text{signal in noise})}{P(\mathbf{d}|\text{noise})} = \cdots \propto \exp(\frac{1}{2}\text{SL})^{-1}$$

Dominant Polarization frame, $\hat{\textbf{F}}_{+}^{\textit{w}}\cdot\hat{\textbf{F}}_{\times}^{\textit{w}}=0$:

Standard Likelihood = SL =
$$\left|\hat{\mathbf{F}}_{+}^{w}\mathbf{d}\right|^{2} + \left|\hat{\mathbf{F}}_{\times}^{w}\mathbf{d}\right|^{2}$$

magnitude of projection on F_+ , F_{\times} plane *ie* part of **d** that can be due to a GW

Hard Constraint =
$$\mathbf{HC} = \left| \hat{\mathbf{F}}_{+}^{w} \mathbf{d} \right|^{2}$$

 $\hat{\mathbf{F}}_{+}$ – Network most sensitive polarization (ellipse major axis)

incoherent/null energy — non gaussian noise

Total Energy =
$$E_{tot} = |\mathbf{d}|^2$$

Nul

total magnitude of **d**

I Energy =
$$E_{null} = |\hat{\mathbf{K}} \cdot \mathbf{d}| = E_{tot} - SL$$

part of d that cannot be due to a GW, noise only

Incoherent Energy =
$$E_{inc} = \sum_{\alpha=1}^{N} |K_{\alpha} d_{\alpha}|^2$$

autocorrelation term of *E_{null}* Incoherent vs null energy test :

• GW coherently cancelled in $E_{null} \longrightarrow E_{inc}/E_{null}$ is large

• no cancellation for glitches $\longrightarrow E_{inc}/E_{null} \simeq 1$

 \hookrightarrow reject events with $E_{inc}/E_{null} < 1.5$

glitch standard likelihood

Goal : fold detection statistic and glitch veto gaussian noise + long tail

$$P(\mathbf{d}| ext{noise}+ ext{glitches}) \propto \prod_lpha \exp(rac{1}{2}|d_lpha|^2) + R_lpha$$

 R_{α} characterize non-gaussianity of detectors

$$L = \frac{P(\mathbf{d}|\text{signal in noise})}{P(\mathbf{d}|\text{noise + glitches})} = \cdots \propto \exp(\frac{1}{2}\text{SL})\frac{1}{\prod_{\alpha} 1 + R_{\alpha}\exp(\frac{1}{2}|d_{\alpha}|^{2})}$$

simplify : $R_{\alpha} = R \ll 1$
gSL = log $L = \frac{1}{2}\text{SL} - \log(1 + R\sum_{\alpha}\exp(\frac{1}{2}|d_{\alpha}|^{2}))$

Interpretation : $gSL \simeq SL - max_{\alpha} |d_{\alpha}|^2$ largest strain may be due to a glitch

Michał Wąs , Patrick Sutton ()

Burst F2F G070488-00-Z

X-Pipeline

- X-Pipeline base algorithm
 - condition data
 - time shift to GRB position
 - make TF maps of detection statistic
 - cluster TF maps (black pixel probability 1%)
 - cluster across analysis times (FFT integration times)
- running GRB searches with X-Pipeline is easy
 - create directory and find which detectors were on
 - ./multiGRB.py -p grb.ini -g grblist.txt
 - grblist.txt simple ascii file with GRB name, time and sky position
 - estimate injection scales to use, based on detectors' spectra
 - ./grbInjScale.sh
 - submit jobs

```
condor_submit_dag grb_*.dag
```

- create report web pages with results/upper limits for each GRB
 - ./grbResults.sh

CLOSED BOX analysis procedure

- on-source data \pm 60s around GRB trigger
- network selection detectors that where on during the whole on source period (±60s)
- background estimation
 - off-source data: coincident data within ± 12 hours of GRB trigger
 - off-source data cut into 2 minutes segments
 - loudest event in each segments
 - median/90 percentile loudest event \rightarrow estimate loudest on-source event
- upper limits
 - GWB injections into on-source data
 - upper limits against estimated loudest on-source event
- Parameters
 - analysis times :
 - 1/256, 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 seconds
 - frequency band : 64–1792 Hz
 - gSL free parameter R set to 0.5, veto ratio set to 1.5
 - simulations CSG/SG at 100, 150, 250, 500, 1000 Hz

•	9 GRBs in May/June 2007 with various network
	configurations (LIGO - Virgo - GEO)

0520	0520B	0521	0529	0531	0610	0615	0616	0621
$H_1 H_2 VG$	H ₁ LVG	$H_1 H_2$	$H_1 H_2 LV$	LVG	H ₁ LG	$H_1 H_2 L$	$H_1 H_2 VG$	H ₁ LVG

analysis with both HC and gSL to compare performance

- a "typical" GRB 070615
- a GRB with "glitchy" detectors 070620B
- less clusters, larger clusters (clusters cover 1% of TF map)

GRB070615 — background

color shows ln(hardconstraint)

- tail cut by veto
- on source event estimated from median loudest off-source background

GRB070615 — CSG 150 Hz Q=9 injections

• veto —
$$E_{inc}/E_{null} < 1.5$$

• hrss =
$$1.3 \cdot 10^{-21}$$

• hrss =
$$4.6 \cdot 10^{-22}$$

hrss 90% UL, against median :

- HC without veto $2.3 \cdot 10^{-22}$ HC with veto $- 2.1 \cdot 10^{-22}$ $- 2.5 \cdot 10^{-22}$ gSL
- hrss 90% UL, against 90 percentile :
- 5.6 \cdot 10⁻²² HC without veto $- 2.6 \cdot 10^{-22}$ $- 2.6 \cdot 10^{-22}$ gSL

 \implies need to reject glitches for unlucky case

GRB070520B — "glitchy" GRB

Network

IFO	H_1	L	V	G
$F_+^2 + F_\times^2$	0.411	0.372	0.828	0.889

- Virgo and GEO are favored by GRB sky position
- null streams : 2 linear combination of Virgo and GEO
- poor null stream at low frequencies

Michał Wąs , Patrick Sutton ()

GRB070520B — background

hardconstraint

glitch SL

- tail cut by veto
- wider separation between with/without veto

Michał Wąs , Patrick Sutton ()

Burst F2F G070488-00-Z

10⁻¹ ⁻¹ ⁻¹

no tail

10⁰

GRB070520B — CSG 150 Hz Q=9 injections

• hrss 90% UL,	agaiı	nst median :	 hrss 90% UL, percentile : 	agaii	nst 90
HC without veto	—	$2.8 \cdot 10^{-22}$	HC without veto	—	$5.6 \cdot 10^{-22}$
gSL	_	$2.7 \cdot 10^{-22}$	gSL	_	$2.9 \cdot 10^{-22}$

- null stream not sensitive enough $\rightarrow E_{inc}/E_{null}$ random value around 1 \rightarrow veto reject injections
- $2 \cdot 10^{-22} \rightarrow \text{total SNR}$ in network = 7, same as for GRB070615

- V3 calibration
- calibration/statistical errors are not accounted for
- cross-correlation GRB070201 draft July 2, P070081-02-Z

circular SG	T=25ms	T=100ms	HC with veto	gSL
frequency	90% UL	90% UL	90% UL	90% UL
	×10 ⁻²²	×10 ⁻²²	×10 ⁻²²	×10 ⁻²²
100 Hz	17.5	16.0	7.0	9.5
150 Hz	10.3	10.3	4.4	6.6
250 Hz	10.9	11.6	5.0	7.1
554 Hz	19.3	20.7	9.8	12.0
1000 Hz	33.8	37.1	18.7	21.6

 \implies factor 2 improvement

• $4 \cdot 10^{-22} \rightarrow \text{total SNR}$ in network = 7 at 150Hz

Summary

- Preliminary study of 10 S5 GRBs with X-Pipeline.
- Study relative performance of different likelihoods for different networks
 - hard constraint + null vs. incoherent energy test
 - glitch standard likelihood
- Null versus inc. test works well if null stream sensitive enough
 - Use H1-H2 null stream (when available)
 - Do not use null stream from non-aligned detectors (HLV or HLG), except at high frequencies
- Glitch SL new statistic, robust against glitches
 - Not as sensitive as hard constraint for most GRBs.
 - Better for very glitchy GRB times (e.g. 070520B) when H1-H2 null stream not available
- Next steps
 - Find good estimates of likelihoods performance
 - Finalize choice of likelihoods to be used for each GRB/network configuration
 - Large-scale analysis of S5 GRBs