

Parametric Instabilities and the geometry of the recycling cavities

LIGO-G070441-00-R

Guido Mueller

(Credit goes to Bill Kells, David Ottaway, Valera Frolov)

Perth, July 2007

LIGO

Guido Mueller

My understanding: PI limited to Hermite-Gauss modes up to n and m < 5 Higher order modes have Diffraction losses > ITM transmission

Perth, July 2007

LIGO

Guido Mueller

Goal would be:

LIGO

- Compare optical gain of dual recycled interferometer with optical gain in single cavity
 - » Will depend on round trip phase shift of higher order modes in recycling cavities (PI-mode recycling (bad) or extraction (good))
 - » Try to find Gouy phases which reduce Q_{opt}

Optimization is currently done

- for Alignment sensing (try to get the 10-modes out of the arm cavities to the WFS)
- and to suppress Bulls eye (HG 20, HG 02) modes in short Michelson IFO (reduce scatter losses in signal sideband (Yi Pan paper))

Simulation

- Strongly undercoupled cavity
- (R_{ITM}=0.995, R_{rest}<0.94)
- Roundtrip phase shift:
 - • π : Power recycling -> PI mode will build up
 - • 2π : Signal extraction -> PI mode will be damped
- Roundtrip phase depends on Gouy phases and positions of all other mirrors

- Start discussion with following configuration:
 - » symmetric BS: $t_{BS} = r_{BS}$, no Gouy phases on recycling arms
 - » PR mirror is power recycling the carrier
 - » SR mirror is extracting the signal mode (RSE configuration)

Power recycling: The i² ensures destructive interference with cavity leakage at ITM R Power recycl.

Bad for PI modes.

- Start discussion with following configuration:
 - » symmetric BS: $t_{BS} = r_{BS}$, no Gouy phases on recycling arms
 - » PR mirror is power recycling the carrier
 - » SR mirror is extracting the signal mode (RSE configuration)

Signal recycling: the real SR field ensures construct. interference with cavity leakage at ITM RSE SS Very good for us

- Start discussion with following configuration:
 - **»** symmetric BS: $t_{BS} = r_{BS}$, no Gouy phases on recycling arms
 - » PR mirror is power recycling the carrier
 - » SR mirror is extracting the signal mode (RSE configuration)

Recycling arm Michelson IFO would be bright!

№ PI-mode travels 100% to 2nd Cavity

OK????

Guiuo mueneľ

 2^{nd} Cavity moved by $\lambda/4$ compared to 1^{st} cavity to have MI dark (compensates the (it)² in BS)

Guido Mueller

SR

PR

LIGO

Simulation

1st Case:

LIGO

 - 2nd Cavity resonant with PI mode (unlikely): Light reflects back into short recycling cavity MI Picks up another 90deg phase shift

- Round trip phase shift is
 180deg Signal recycling
 (very bad)
- Add now identical Gouy phases to recycling cavities
 - recycling cavity MI stays bright
 - move from signal recycling to signal extraction

Perth, July 2007

Guido Mueller

Simulation

2nd Case: - 2nd Cavity non-resonant with PI mode (likely): Picks up 180deg phase shift at 2nd Cavity Light reflects back into short recycling cavity MI Picks up another 90deg phase shift

- Round trip phase shift is
 360deg Signal extraction
 (very good)
- Add now identical Gouy phases to recycling cavities
 - recycling cavity MI stays bright
 - move from signal extraction to signal recycling

relative recycling gain: Field amplitude

Perth, July 2007

LIGO

Guido Mueller

- **Currently I optimized for alignment sensing (detect the 10-mode)** keeping the signal losses in mind (20-mode):
 - » PR recycling cavity would have $\Psi_{c} \sim \pi/2$ (to extract the 10-mode)
 - SR mirror is extracting signal mode (RSE configuration)

Recycling arm **Michelson IFO** is dark for odd modes!

Read 2nd Cavity doesn't matter anymore

Note: Nothing has changed for even modes!

Pertin, juny 2007

LIGO

Guido Mueller

Only new case:

LIGO

- Round trip phase shift is
 360deg Signal extraction
 (very good)
- Add now identical Gouy phases to recycling cavities
 - recycling cavity MI stays dark
 - move from signal extraction to signal recycling

relative recycling gain: Field amplitude

(Structure in center caused by SR-detuning)

Perth, July 2007

Guido Mueller

- One possible design has the following configuration:
 - » Power recyling cavity will have $\Psi_{G} \sim \pi/2+0.1$
 - » Signal recyling cavity will have $\psi_{G} \sim 0.1$
- Odd Modes:

- » relative recycling gain < 1 for n+m < 8</p>
- Even Modes (2nd Cavity off-resonant):
 » relative recycling gain < 1 for n+m < 4
- Even Modes (2nd Cavity on-resonance, unlikely):
 » relative recycling gain > 1 for n+m < 4

- One possible design has the following configuration:
 - » Power recyling cavity will have $\Psi_{G} \sim \pi/2+0.1$
 - » Signal recyling cavity will have $\psi_{G} \sim 0.1$
- One problem:

» Optimum design for 20-mode suppression is $\psi_{g} \sim \pi/4$ rad (Yi Pan's paper)

Ongoing discussion ...