

Detection and reconstruction of burst signals with networks of gravitational wave detectors

S.Klimenko, I.Yakushin, A.Mercer, G.Mitselmakher, S.Mohanty

- likelihood analysis
- network parameters
- constraints/regulators
- network coherent energy
- reconstruction of GW signals
- summary

- Combine measurements from several detectors
 - > confident detection, elimination of instrumental/environmental artifacts
 - reconstruction of source coordinates
 - reconstruction of GW waveforms
- Detection & reconstruction methods should handle
 - >arbitrary number of co-aligned and misaligned detectors
 - >variability of the detector responses as function of source coordinates
 - differences in the strain sensitivity of detectors
- Extraction of source parameters
 - >confront measured waveforms with source models
- For burst searches matched filters do not work
 - > need robust model independent detection algorithms

Combine data, not triggers

- Guersel, Tinto, PRD 40 v12, 1989
 - > reconstruction of GW signal for a network of three misaligned detectors
- Likelihood analysis: Flanagan, Hughes, PRD57 4577 (1998)
 - > likelihood analysis for a network of misaligned detectors
- Two detector paradox: Mohanty et al, CQG 21 S1831 (2004)
 - state a problem within likelihood analysis
- Constraint likelihood: Klimenko et al, PRD 72, 122002 (2005)
 - address problem of ill-conditioned network response matrix
 - First introduction of likelihood constraints/regulators
- Penalized likelihood: Mohanty et al, CQG 23 4799 (2006).
 - likelihood regulator based on signal variability
- Maximum entropy: Summerscales at al, to be published
 - likelihood regulator based on maximum entropy
- Rank deficiency of network matrix: Rakhmanov, CQG 23 S673 (2006)
 - > likelihood based in Tickhonov regularization
- GW signal consistency: Chatterji et al, PRD 74 082005(2006)
 - > address problem of discrimination of instrumental/environmental bursts
- Several Amaldi7 presentations and posters by I.Yakushin, S. Chatterj, A.Searle and S.Klimenko

Likelihood for Gaussian noise with variance s²_k and GW waveforms h₊, h_x: x_k[i] – detector output, F_k – antenna patterns

$$L = \sum_{i} \sum_{k} \frac{1}{2s_{k}^{2}} \Big[x_{k}^{2}[i] - (x_{k}[i] - x_{k}[i])^{2} \Big]$$

detector response - $\mathbf{x}_k = h_+ F_{+k} + h_{\times} F_{\times k}$

- Find solutions by variation of *L* over un-known functions h₊, h_x (Flanagan & Hughes, PRD 57 4577 (1998))
- "Matched filter" search in the full parameter space
 - > good for un-modeled burst searches, but...
 - > number of free parameters is comparable to the number of data samples
 - ➤ need to reduce the parameter space → constraints & regulators (Klimenko et al , PRD 72, 122002, 2005)

Network response matrix

solution for GW waveforms satisfies the equation

$$\begin{bmatrix} \vec{X} \cdot \vec{F}_{+} \\ \vec{X} \cdot \vec{F}_{\times} \end{bmatrix} = \begin{bmatrix} |F_{+}|^{2} & 0 \\ 0 & |F_{\times}|^{2} \end{bmatrix} \begin{bmatrix} h_{+} \\ h_{\times} \end{bmatrix} = g \begin{bmatrix} 1 & 0 \\ 0 & \boldsymbol{e} \end{bmatrix} \begin{bmatrix} h_{+} \\ h_{\times} \end{bmatrix}$$

g – network sensitivity factor
e – network alignment factor

network response matrix

(PRD 72, 122002, 2005)

Global Network of GW detectors

$$|\vec{F}_{+,\times}|^{2} = \sum_{k} \frac{F_{+,\times k}^{2}}{\boldsymbol{s}_{k}^{2}}$$
$$g = |\vec{F}_{+}|^{2}, \quad \boldsymbol{e} = \frac{|\vec{F}_{\times}|^{2}}{|\vec{F}_{+}|^{2}}$$

g_a and ϵ_a are averaged over the sky

network	g _a	ε _a ,%	θ,φ	rejection of glitches
single IFO	1	0	-	-
H1/H2	1.4	0	-	H1-H2 consistency (correlated noise?)
H1/H2/L1	2.3	2.7	ring	waveform consistency
H1/H2/L1/G1	2.4	4.8	ring-point	waveform consistency
H1/H2/L1/G1/V1	3.1	16.5	ring-point	waveform consistency

• For better reconstruction of waveforms (and source parameters) more coverage on the second polarization is desirable

S.Klimenko, July 14, 2007, Amaldi7, Sydney, G070437-00-Z

Second Se

• AIGO is almost antipodal to LIGO (lat: 121.4, long: -115.7)

enhancement of F_+ component

significant improvement in the detection of the second polarization

• regulators are introduced to construct P_x when $|F_x| \rightarrow 0$ hard, soft, Tikhonov, etc..

F

X

Misaligned detectors É > no null space e << 1 for significant fraction</p> of the sky $L_{\perp} + L_{\sim} = x_1^2 + x_2^2$ L=const(q,f)

Aligned detectors (H1H2) $\geq e = 0$ only one projection P+

• The discontinuity between aligned and misaligned cases can be resolved with regulators: $|F'_{\downarrow}|^2 = |F_{\downarrow}|^2 + d$

- regulators can not be arbitrary they should preserve the orthogonality of the network vectors F_+ and F_x . Otherwise the projections P_+ and P_x can not be constructed.
- regulators can be introduced in two (equivalent) ways by adding small non-zero vector \mathbf{d} to F_x

$$L_{+} = \sum_{i,j} x_{i} x_{j} P_{ij,+} = E_{+(i=j)} + C_{+(i\neq j)}$$
$$L_{\times} = \sum_{i,j} x_{i} x_{j} P_{ij,\times} = E_{\times(i=j)} + C_{\times(i\neq j)}$$

- quadratic forms C₊ & C_x depend on time delays between detectors and carry information about q,f – sensitive to source coordinates
- properties of the likelihood quadratic forms

arbitrary network

2 detector network

$$\operatorname{cov}(L_{+}L_{\times}) = 0$$

$$\operatorname{cov}(C_{+}C_{\times}) = -\sum e_{+i}^{2} e_{\times i}^{2}$$

$$\operatorname{cov}(E_{+}E_{\times}) = \sum e_{+i}^{2} e_{\times i}^{2}$$

 $C_{+} + C_{\times} = 0$

$$E_{+} + E_{\times} = x_1^2 + x_2^2$$

• How is the coherent energy defined?

- L, null stream and reconstructed waveforms are invariant with respect to rotation of vectors F₊ and F_x in the detector plane
- But incoherent & coherent terms depend on the selection of the coordinate frame
- Define coherent energy in the frame where F'₊ is aligned with the projection X_p (*principle component frame*)

 $L_{+} + L_{\times} = C'_{+} + E'_{+}$

• Only in this frame, for two detector network Pearson's correlation can be defined

$$r = \frac{1}{2} \frac{C_{12}'}{\sqrt{E_{11}E_{22}}} = \frac{\langle x_1 x_2 \rangle}{\sqrt{\langle x_1^2 \rangle \langle x_2^2 \rangle}}, \quad \langle x_1 \rangle = \langle x_2 \rangle = 0$$

Coordinate reconstruction

theta, deg. 140

×103

180

179

- What statistic to use?
- Likelihood ratio
- very dependent on regulators
- large bias

- Correlated Energy
- sensitive to time delays
- calculated in PCF
- works with "right" regulator,
- little dependence on regulator
- small bias

sg1300Hz in H1-L1

S.Klimenko, July 14, 2007, Amaldi7, Sydney, G070

simulated sine-Gaussian waveform: f=1304, q=9,

L1/H1/H2/G1 hrss(10⁻²¹): 2.5/1.3/1.3/1.6 SNR(a) : 24/16/8/5 F+ : .25/.13/.13/.16

> real noise, average amplitude SNR=14 per detector

S.Klimenko, July 14, 2007, Amaldi7, Sydney, G070437

injection

Reconstruction of burst waveforms

black band-limited time series

- If GW signal is detected, two polarizations and detector responses can be reconstructed and confronted with source models for extraction of the source parameters
- Figures show an example of LIGO glitch reconstructed with the coherent WaveBurst event display (A.Mercer et al.)
 - \rightarrow powerful tool for consistency test of coherent triggers.

- Several GW detectors are now operating around the world forming a network
 - coherent network analysis addresses problems of detection and reconstruction of GW signals with detector networks
- Likelihood methods provide a universal framework for burst searches
 - likelihood ratio statistic is used for detection
 - constraints significantly improve the performance of coherent algorithms
 - GW waveforms can be reconstructed from the data
 - Iocation of sources in the sky can be measured,
 - > consistency test of events in different detectors can be performed
- New statistics based on coherent energy are developed for coordinate reconstruction and consistency tests.

Reconstruction of source coordinates

simulated DFM-A1B2G1 waveform at θ =119, ϕ =149, L1/H1/V1

simulated noise, average SNR=160 per detector

Likelihood sky map Signal detected at

 $\theta = 118, \ \phi = 149$

