# Modal frequencies of LIGO structures G070421-00-K

Justin Greenhalgh, Tim Hayler, Ian Wilmut

## Background

- During tests on LIGO structures, frequencies have been seen below the first predicted frequency as calculated by finite element analysis.
- Is this to do with the clamping, or that the structure is not fixed to something that is infinitely stiff?

## Different approaches to validate peaks

- Tested unconstrained structures (suspended) so that clamping and fixing issues are redundant (T070147).
- Measured the movement at the base of the structure. Are the blocks fixed (T070135)?
- Done FEA on blocks (RAL test bed) that are not perfectly fixed to the floor (T070130).

# Tests on unconstrained structures

• Comparing the modal frequency results of a finite element analysis, with physical tests on suspended structure.



7<sup>th</sup> modal frequency from FEA



Structure suspended by green sling

#### Clearly defined first peak



| Modal Frequency | FEA | Measured | Discrepancy |
|-----------------|-----|----------|-------------|
|                 | Hz  | Hz       | %           |
| 1st             | 60  | 56       | 7           |

#### Unconstrained structures - lessons

- It is possible to clearly identify modes from the FEA in a real test (single clear peak; mode shapes identifiable)
- Results are generally within ~10% of FEA
- (Exception in case of quad sleeve behaviour: explicable in terms of weld details)

# Measuring movement at the base of the structure Accelerometer locations



# Modal testing of quad structure, longitudinal mode movement of the base relative to the structure real test 0.1, FEA 0.001



#### FEA movement of feet

• "Hard" model

NODE UX UY UZ USUM 174 -0.70957E-04-0.83481E-04 0.73282E-03 0.74096E-03 330 0.61409E-01-0.27995E-01 0.16824E-01 0.69554E-01 565 0.13529 -0.42635E-01 0.16829E-01 0.14284

• "Soft" model (see below)

NODE UX UY UZ USUM
174 -0.27769E-02 0.15187E-02 0.24795E-02 0.40207E-02
330 0.56097E-01-0.26329E-01 0.15835E-01 0.63959E-01
565 0.12681 -0.40565E-01 0.15843E-01 0.13408

# Movement of feet - lessons

- FEA shows for rigidly fixed blocks the feet move ~0.001 times as far as the middle ring.
- Measurements show the feet move ~0.1 times as far as the middle ring
- FEA with imperfectly fixed blocks allows movement of similar order (see next slides).

# Effect of steel base blocks on frequency measurement T070130



- Fixed steel blocks compared to partially fixed steel blocks.
- Model with soft pads supporting the blocks.

# Soft blocks - results

- See above for foot movement: better match to observations
- Also shows reduction in frequency of structure

#### SET TIME/FREQ

- 1 89.324
- 2 138.41
- 3 195.35

#### SET TIME/FREQ

- 1 24.315 Pads shear in X
- 2 24.722 Pads shear in Y
- 3 30.718 Blocks yaw en masse on pads about Z
- 4 39.149 two blocks yaw out of phase on pads
- 5 43.789 two blocks yaw on pads, structure cantilevers in X
- 6 44.304 two blocks yaw one way en masse; two the other way
- 7 44.580 similar to mode 5
- 8 51.809 structure cantilevers in Y
- 9 53.431 two blocks lift (stretching pads in Z); structure cantilevers in X
- 10 56.862 two blocks roll (about Y) in opposition
- 11 58.670 blocks pitch and/or roll
- 12 60.153 blocks pitch and/or roll
- 13 62.954 blocks pitch, roll and yaw
- 14 65.237 blocks pitch, roll and yaw (see diagram below)
- 15 72.035 blocks roll about Y, structure cantilevers in X
- 16 83.259 two blocks yaw in opposition
- 17 87.424 blocks pitch; structure cantilevers in X
- 18 101.58 blocks roll; structure goes in torsion
- 19 103.19 blocks pitch, structure cantilever in Y
- 20 125.84 block roll, structure cantilevers in X

#### Harmonic response with soft pads



```
1 24.315
2 24.722
3 30.718
4 39.149
5 43.789 *
6 44.304
7 44.580 *
8 51.809
9 53.431 *
10 56.862
11 58.670
12 60.153
13 62.954
14 65.237
15 72.035 *
16 83.259
17 87.424 *
18 101.58
19 103.19
20 125.84 *
```

#### Effect of base blocks – lessons

- There is at least one credible model of imperfectly supported blocks that gives movement of the feet such as we have seen
- This model also gives reduced natural frequencies, and "extra" peaks in the transmissibility curve at frequencies other than those associated with the structure itself.

#### CONCLUSIONS

- Suspended method gives clear, comprehensible results
   7 out of 8 results were within 10% of FEA.
- From FE rigidly fixed blocks should work well, give accurate results.
- We have observed that the movement at the base of the structure is a factor of 0.1 less than the movement at the middle of the structure, predicted FEA says it should be 0.001, so blocks are moving more than they should.
- A simple FE model with blocks not perfectly constrained gives low level spurious peaks.