The Laser Interferometer

Gravitational-Wave Observatory

A Caltech/MIT collaboration supported by the United States National Science Foundation http://www.ligo.caltech.edu

Recent Results From The LIGO Search For

Periodic Gravitational Wayses

Periodic Gravitational Waves

Gregory Mendell, LIGO Hanford Observatory

on behalf of the LIGO Scientific Collaboration

LIGO-G070408-00-W

Sources

Search methods can detect any type of periodic source.

Upper limits are set on gravitational-wave amplitude, h₀, of rotating triaxial ellipsoid.

Credits:

A. image by Jolien Creighton; LIGO Lab Document G030163-03-Z.

- B. image by M. Kramer; Press Release PR0003, University of Manchester Jodrell Bank Observatory, 2 August 2000.
- C. image by Dana Berry/NASA; NASA News Release posted July 2, 2003 on Spaceflight Now.
- D. image from a simulation by Chad Hanna and Benjamin Owen; B. J. Owen's research page, Penn State University.

Mountain on neutron star

Accreting neutron star

Precessing neutron star

Oscillating neutron star

Searches

*Searches 2-4 are computationally expensive: e.g., for obs. time T a coherent search over the sky, f, and df/dt scales as T^6 while its sensitivity scales as $T^{1/2}$; orbital params. or higher derivs. add powers of T.

- 1. Known pulsars (radio & x-ray) (e.g., Crab pulsar)
 - Position & frequency evolution known (including derivatives, timing noise, glitches, orbit).
- 2. Unknown neutron stars
 - Nothing known, search over sky position, frequency & its derivatives.
- 3. Accreting neutron stars & LMXBs (e.g., Sco-X1)
 - Position known; some need search over freq. & orbit.
- 4. Targeted sky position: galactic center, globular clusters, isolated non-pulsing neutron stars (e.g., Cas A)
 - Search over frequency & derivatives.

Methods

- Semicoherent Methods
 - StackSlide: add the power
 - Hough: add weighted 1 or 0
 - PowerFlux: add weighted power

- Coherent Methods
 - Bayesian Param. Estimation
 - Maximum Likelihood & Matched Filtering

$$P(x \mid h) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-(x_1 - h_1)^2}{2\sigma_1^2}} \frac{1}{\sqrt{2\pi}\sigma_2} e^{\frac{-(x_2 - h_2)^2}{2\sigma_2^2}} \dots$$

$$P(h \mid x) = P(h)P(x \mid h) / P(x) \Longrightarrow \text{Time Domain}$$

$$\chi^2 = \sum_{j} \frac{(x_j - h_j)^2}{\sigma_j^2} \Rightarrow \left(\sum_{j} \frac{x_j h_j}{\sigma_j^2} - \frac{1}{2} \sum_{j} \frac{h_j h_j}{\sigma_j^2}\right)$$

 \Rightarrow Frequency Domain $\Rightarrow (\log \Lambda)_{\max} \Rightarrow F$

•Weights depend on both noise and antenna patterns:

- •Methods can include multi-detector data and coincidence steps.
- •Hierarchical Methods: combine the above to maximize sensitivity.

GWs from triaxial ellipsoid

- For upper limits have to select a model. (This is not needed for detection!)
- Ellipticity, ε, measures asymmetry in triaxially shaped neutron star.

$$h_0 = \frac{4\pi^2 G}{c^4} \frac{\varepsilon I_{zz} f^2}{r}$$

$$\varepsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$$

Equatorial Ellipticity

f is the GW freq.

All results for this talk are 95% confidence ULs on h_0 and ϵ .

LIGO-G070408-00-W

Astrophysical predictions & payoff

- Neutron, hybrid or quark stars max. $\varepsilon \sim 10^{-6}$, 10^{-5} , 10^{-4} respectively.
- Blandford/LSC statistical estimate: few \times 10⁻²⁴ (100 yrs/ $\tau_{birthrate}$)^{1/2}
- Age-based limits, e.g., Cas A (see K. Wette's presentation)
- Spindown limits (e.g., Crab pulsar)
- Accreting Stars
 - Torque balanced by GWs or limit cycles
 - Thermo-Elastic mountains
 - Magnetic mountains
 - R-modes
- For a summary, see: LIGO Scientific Collaboration, gr-qc/0605028, accepted by Phys. Rev. D (2007).
- For more on indirect limits and astrophysical payoff see B. Owen poster.

LIGO S5 Known Pulsar Search

- Using data from the first thirteen months of S5
- Black curve represents one full year of data for all three interferometers running at design sensitivity
- Blue stars represent pulsars for which we are reasonably confident of having phase coherence with the signal model.
- Green stars represent pulsars for which there is uncertainty about phase coherence

LIGO PRELIMINARY

S5 Crab Pulsar Result

- These results give upper limits for the Crab pulsar of $\varepsilon < 2.6 \times 10^{-4}$, $h_0 < 5.0 \times 10^{-25}$ using S5 data up to the glitch on 23 Aug. 2006
 - this value of the ellipticity is now in the range of some of the more speculative equations of state (Owen, 2005)
- These beat the spindown limit of $h_0 < 1.4 \times 10^{-24}$ by a factor of 2.9 for canonical moment of inertia I = 10^{38} kgm² we even beat Palomba's limit
- Start to constrain the amount of spin-down energy in GWs to less than 10% of overall emitted and known spindown (Palomba, 2000, Santostasi)
 - This is significant: the *uncertainties* on all non-GW contributions *add up to* 80% of the total!
- Moment of inertia is uncertain by about a factor of three, but we can plot the result on the moment of inertia ellipticity plane to give exclusion regions (Pitkin for the LSC, 2005)

UNDERWAY

Multi-template Crab Search

- •Known pulsar GW searches track phase assuming $f_{GW}=2f_{EM}$.
- •If the gravitational radiation time evolution is different from that of the electromagnetic radiation it is possible these could miss the gravitational waves.
- •We are considering mechanisms by which any emitted gravitational waves will differ from the electromagnetic.
- Consideration of free precession or glitches leads to $|f_{GW}-2f_{EM}|/(2f_{EM}) \le 10^{-4}$ and corresponding band for time derivatives of the frequency.
- Need many templates; for the Crab this is underway.

S4 One Month All-Sky Search: Hanford, Livingston, and Multi-IFO Results

S4 H1 Strain Upper Limits (PowerFlux, StackSilde, Hough)

PowerFlux circular-polarization strain H1 S4 upper limits for band with HW Injected Signal.

<u>Simulated Pulsar</u> ($h_0 \sim 8.4 \times 10^{-24}$ → nearly circ. polarized signal)

http://einstein.phys.uwm.edu/

Einstein@home S3 Final Results

- 50-1500 Hz band shows no evidence of strong pulsar signals in sensitive part of the sky, apart from the hardware and software injections.
- Outliers are consistent with instrumental lines. All significant artifacts away from a·n=0 are ruled out by follow-up studies.

PRELIMINARY PowerFlux S5 Results

(Using data from 07 Nov. 2005 through 20 July 2006)

Hanford 4km, ~270 Hz, non-zero spindown (equatorial coordinates)

Einstein@Home S4 & S5

- •S4 Post-Processing Nearly Complete!
- •S5 Initial Hierarchical Search is underway:
 - •computes the fully coherent multi-ifo maximum likelihood statistic for 25 hr segments containing 40 hrs of Hanford and Livingston 4km IFO data.
 - •performs Hough transforms of the results.
 - •will eventually include automated follow-up of candidates; could include StackSlide option.

LIGO

Summary Preliminary Results and Plans

1. S4 all-sky, 50-1000 Hz, PowerFlux, StackSlide, Hough search: results in preparation (see presentation by A. Sintes) and start of S5 preliminary all-sky PowerFlux search:

Best UL: $h_0 < \text{few} \times 10^{-24}$.

2. Start of S5 preliminary coherent known pulsar search:

Best UL h_0 < few × 10⁻²⁶; Best ϵ UL: a little less than ~ 10⁻⁷; Crab limits beat the spindown limit!

- 3. S5 targeted sources: Cas A (youngest candidate NS) search is underway. (see presentations by K. Wette & B. Owen)
- 4. S5 all-sky PowerFlux & Multi-IFO initial Hierarchical Einstein@Home searches are under way.
- 5. More searches are under development, e.g., LMXBs.

End

Frequency Modulation and S Parameter

$$f(t) \cong \left(1 + \frac{\vec{v}(t)}{c} \cdot \hat{n}\right) \left[f_0 + f_1(t - t_0) + \dots\right]$$

Relativistic corrections are included in the actual code

$$\dot{f}(t) \cong \left(\frac{\vec{a}(t)}{c} \cdot \hat{n}\right) \left[f_0 + f_1(t - t_0)\right] + \left(1 + \frac{\vec{v}(t)}{c} \cdot \hat{n}\right) f_1 + \dots$$

$$S = \left(\frac{\vec{a}_{orb}(t)}{c} \cdot \hat{n}\right) f_0 + f_1$$

 $S = \left(\frac{\vec{a}_{orb}(t)}{c} \cdot \hat{n}\right) f_0 + f_1$ For analysis < 1 yr sky points with small S have small doppler variation; harder to distinguish GWs from instrument lines at these points.

PRELIMINARY

PowerFlux S5 Preliminary Results

(Using data from 07 Nov. 2005 through 20 July 2006)

H1 S5 0-spindown run

Published Periodic Search Results To June 2007

*. arXiv:gr-qc/0702039 [ps, pdf, other] :

Title: Upper limits on gravitational wave emission from 78 radio pulsars

Authors: The LIGO Scientific Collaboration: B. Abbott, et al, M. Kramer, A. G. Lyne

Comments: 21 pages, updated author list (* Just accepted by Phys. Rev. D)

1. arXiv:gr-gc/0605028 [ps, pdf, other] :

Title: Coherent searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: results from the second

LIGO science run

Authors: The LIGO Scientific Collaboration (To appear in Phys. Rev. D)

Comments: 35 pages, 30 figures

2. arXiv:gr-qc/0508065 [ps, pdf, other] :

Title: First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform

Authors: LIGO Scientific Collaboration: B. Abbott, et al

Comments: 22 pages, 21 figures, to be submitted to Phys. Rev. D

Journal-ref: Phys.Rev. D72 (2005) 102004

3. arXiv:gr-qc/0410007 [ps, pdf, other] :

Title: Limits on gravitational wave emission from selected pulsars using LIGO data

Authors: The LIGO Scientific Collaboration: B. Abbott, et al, M. Kramer, A.G. Lyne

Comments: 6 pages, 2 figures

Journal-ref: Phys.Rev.Lett. 94 (2005) 181103

4. arXiv:gr-qc/0308050 [ps, pdf, other] :

Title: Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO600 and LIGO detectors

Authors: The LIGO Scientific Collaboration: B.Abbott, et al

Comments: 16 pages,8 figures

Journal-ref: Phys.Rev. D69 (2004) 082004

The LIGO/VIRGO Pulsar Search Joint Working Group has started meeting!

- LIGO/Virgo MOU signed
- •Weekly teleconferences
- •Face-to-Face meetings in March & May 2007
- Data Sharing started in May 2007

http://einstein.phys.uwm.edu/

- Like SETI@home, but for LIGO/GEO matched-filtered search for GWs from rotating compact stars.
- Support for Windows, Mac OSX, and Linux clients
- Our own clusters have thousands of CPUs.
- Einstein@home has many times more computing power at low cost.

Crab Pulsar Spindown Limit

- Spindown limit assumes all the pulsars rotational energy loss is radiated by gravitational wave
- We know some energy is emitted electromagnetically and is powering the expansion of the Crab nebula
- This is poorly constrained and allows room for gravitational wave emission
- Braking index
 - The braking index of the Crab is n=2.5, not n=3 for purely magnetic dipole radiation, and not n=5 for purely gravitational radiation emission
 - Palomba (2000) allows for a combination of mechanisms to account for this braking index and ends up with a GW spin-down limit which is 2.5 times below the n=5 standard limit.

Credits: X-ray: NASA/CXC/ASU/J. Hester et al.; Optical: NASA/HST/ASU/J. Hester et al.

LIGO

Met with astronomers & astrophysicist in 2006 at MIT

- A. Melatos: Magnetic Mountains
- S. Ransom: Longer term, an "Arecibo in the South" would find and time *hundreds* of new cluster MSPs... (*FAST*?); Even longer term, the Square Kilometer Array will find *thousands* of new pulsars
- C. Palomba/T. Regimbau: population studies
- Dunc Lorimer: tip of the iceberg =>

PRELIMINARY

S4 One Month Semicoherent Search Astrophysical Reach

Other Work:

- 1. X-ray pulsars (for example J0537-6910 glitchiest pulsar) Working with astronomers to get timing data.
- 2. LMXB Search
- 3. Proposed Unknown Binary Search
- 4. Globular cluster target
- 5. Code speed up
- 6. SN1987A
- 7. Generalized PowerFlux
- 8. LIGO/VIRGO work.

Coherent Matched Filtering

$$X_{b} = \sum_{\alpha=0}^{M-1} \sum_{j=0}^{N-1} x_{\alpha j} F_{+\alpha}(0) e^{-i\Phi_{\alpha j b}} \qquad x_{\alpha j} = \frac{1}{N} \sum_{k=0}^{N-1} X_{\alpha k}^{SFT} e^{2\pi i j k/N}$$

$$\overline{X}_{+b} \cong \sum_{\alpha=0}^{M-1} F_{+\alpha}(0) e^{-i\phi_0} \sum_{k} \frac{X_{\alpha k}^{SFT}}{\sqrt{S_{\alpha k}}} \frac{\sin 2\pi \kappa_b - i(1 - \cos 2\pi \kappa_b)}{2\pi (k - \kappa_b)}$$

$$F = \frac{4}{M} \frac{\left\langle F_{\times}^{2} \right\rangle \left| \overline{X}_{+} \right|^{2} + \left\langle F_{+}^{2} \right\rangle \left| \overline{X}_{\times} \right|^{2} - 2 \left\langle F_{+} F_{\times} \right\rangle \Re e \left(\overline{X}_{+} \overline{X}_{\times}^{*} \right)}{\left\langle F_{+}^{2} \right\rangle \left\langle F_{\times}^{2} \right\rangle - \left\langle F_{+} F_{\times} \right\rangle^{2}}$$

F-statistic

Jaranowski, Krolak, & Schutz gr-qc/9804014; Schutz & Papa gr-qc/9905018; Williams and Schutz gr-qc/9912029; Berukoff and Papa LAL Documentation

LIGO-G070408-00-W

LIGO

Results approaching astrophysical interest (also spindown limits/indirect limits; see B. Owen Poster.)

$$E = I\Omega\dot{\Omega} \propto |\ddot{Q}|^2 \Rightarrow \dot{f} = -Kf^5 \Rightarrow \tau_{age} = f/4 |\dot{f}|$$

$$h = \frac{1}{r} \sqrt{\frac{20GI |\dot{f}|}{8c^3 f}}$$

$$r_{min} \sim \sqrt{\frac{\tau_{birthrate}}{\tau_{age}}} R_{galaxy}$$

$$h \approx \frac{1}{R_{galaxy}} \sqrt{\frac{5GI}{8c^3 \tau_{birthrate}}} = 10^{-24} \sqrt{\frac{100 \, yrs}{\tau_{birthrate}}}$$

Blandford (1984) as cited by Thorne in 300 Years of Gravitation; see also LIGO Scientific Collaboration, gr-qc/0508065, accepted by Phys. Rev. D (2005); and LIGO Scientific Collaboration, S2 Maximum Likelihood Search.

Sample 0.25-Hz bands

Determines limit (highest-SNR patch)

Hough count

(North Pole)

(Equator)

StackSlide power

Nature of periodic gravitational waves

The GW signal from a triaxial pulsar can be modelled as

$$h(t) = \frac{1}{2}F_{+}(t; \psi)h_{0}(1 + \cos^{2}\iota)\cos 2\Psi(t) + F_{\times}(t; \psi)h_{0}\cos\iota\sin 2\Psi(t)$$

- The unknown parameters are
 - h₀ amplitude of the gravitational wave signal
 - ψ polarization angle of signal; embedded in F_{x'+}
 - *t* inclination angle of the pulsar
 - ϕ_0 initial phase of pulsar $\Phi(0)$
 - In the known pulsar searches we currently look for signals at twice the rotation frequency of the pulsars
 - For blind searches the location in the sky and the source's frequency and its evolution are search parameters.

