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Observing the Universe

• Electromagnetic waves
• Particles: neutrinos, cosmic rays
• Gravitational waves

J. Van der Velde, this conference

Nicholas Suntzeff, this conference

Ott, Burrows, Lessart, Livne, 2006
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Outline

• Gravitational waves: concepts and sources
• Gravitational wave detectors
• Searches for gravitational waves bursts
• Network of gravitational wave detectors
• Advanced detectors
• Conclusions
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The theory of gravitational radiation
o

• Einstein’s general relativity

• Gravity is not a force, but curvature of space-time
• When matter moves or changes its configuration, a wave of space-time 

curvature arise
gμν = ημν + hμν

• Waves propagate at the speed of light 
• They distort space itself: stretching one direction and squeezing the 

perpendicular in the first half period and vice versa in the second half
• They have two polarizations, the “plus” and “cross”

Gμν= 8πΤμν
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Generating Gravitational Waves

• Existence of gravity waves only of formal interest if there 
were no ways to generate them!

• Changing quadrupole moment of mass (Q~Mx2)
• Estimate strain at distance r away:

» h ~ (c/r) Q’’ 1/(c5 /G)
» laboratory-generated gravitational radiation, e.g., a rotating dumbbell 

(1ton, 2m, 1kHz): power radiated ~ 10-16 J/sec or h at r~λ of 10-38 !!
» Only real hope for studying gravity waves is to look to processes of 

astrophysical and cosmological magnitude

• Astrophysical dumbbells=binary stars, expected strain:
|h|=32π2G/c4 f2Mr2/R   …plug in some numbers...
M=1.4 Mo , f~400Hz, r=20km,
R~15Mpc => h~10-21 (δL/L)

‘standard’ power, 1052 J/s
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The Evidence for Gravitational Waves

• Radio pulsar B1913+16, 
discovered in 1974 by 
Hulse and Taylor as part 
of a binary system

• Long-term radio 
observations have yielded 
neutron star masses and 
orbital parameters

• System shows very 
gradual orbital decay just 
as general relativity 
predicts!

Very strong indirect evidence
for gravitational radiation
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• Eventually the binary pulsar system PSR 1913+16 will merge
• The final inspiral of binary neutron stars and potentially binary 

black holes is the most likely and most well understood 
potential source for gravitational-wave detectors

• Matched filter approach is possible since waveform is known

Gravitational wave sources:
coalescing binary compact objects

Kip Thorne
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• Nearly monochromatic continuous gravitational wave emission 
is possible from asymmetric spinning objects
» Isolated neutron stars with mountains or wobbles
» Accreting neutron stars

• Gravitational waves emitted at twice the spin frequency
• Signal is always on and can be integrated over time to 

increase sensitivity and reject instrument lines
• Can place limits on ellipticity and spin down for known pulsars

Gravitational wave sources: periodic

Dana Berry/NASA M. Kramer
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Gravitational wave sources: stochastic 
• Random type of radiation (described by its spectrum) due to either

» Big bang, other early universe processes
» Many weak unresolved sources emitting gravitational waves independently

• Search for coherent background in multiple detectors
?
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Gravitational wave sources: bursts

• Sources emitting short transients of gravitational radiation
» Supernovae core-collapse
» Merger phase of binary compact objects
» Black hole normal modes
» Neutron star instabilities
» Cosmic string cusps and kinks
» The unexpected!

• What we know about them …
» Catastrophic astrophysical events observed in the particle and/or electromagnetic 

sector will plausibly be accompanied by short signals in the gravitational wave 
sector           plausible suspects

» Exact waveforms are not or poorly modeled
» Durations from few millisecond to x100 millisecond durations with enough power in 

the instruments sensitive band (100-few KHz)
» Searches tailored to the plausible suspects “triggered searches”
» …or aimed to the all-sky, all-times blind search for the unknown using minimal 

assumption on the source and waveform morphology         “untriggered” searches
• Multi-detector analyses are of paramount importance
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Direct detection of gravitational waves

The game really begins when h ~10-21 (δL/L)  
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The gravitational wave endeavor

• Need very massive objects
• Moving at relativistic velocities
• Terrestrial sources are not

detectable
• Extremely weak amplitude
• Very difficult to detect
• Not obscured by intervening 

matter
• Probe regions currently 

inaccessible by electromagnetic 
radiation
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Turning strain h into a measurement  

• Resonant mass detector:
» Translate induced excitations to 

electrical signal by a motion or 
strain transducer which is then 
amplified

• Aluminum bars
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Interferometer Concept
• Orthogonal arm lengths change in different ways as they interact with a 

gravitational wave
• Use Laser to measure relative lengths ΔL/L by observing the changes in 

interference pattern at the anti-symmetric port, for example, for L ~ 4 km  
and for a hypothetical wave of h ~ 10–21, ΔL ~ 10-18 m !

• Power-recycled Michelson interferometer with Fabry-Perot arm cavities
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LIGO

• Laser Interferometer Gravitational-wave Observatory
• Hanford, Washington: 2 km and 4 km detectors
• Livingston, Louisiana: 4 km detector
• 10 ms light travel time
• Managed and operated by Caltech and MIT with NSF funding
• LIGO Scientific Collaboration – 500+ researchers from 45 

institutions worldwide in order to run and analyze the data from the 
LIGO and GEO instruments
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Ground interferometers’ noise budget

• Best strain sensitivity 
~3x10-23 1/Hz1/2

at 200 Hz
• Displacement Noise

» Seismic motion
» Thermal Noise
» Radiation Pressure

• Sensing Noise
» Photon Shot Noise
» Residual Gas

• Facilities limits much 
lower

• Several ground 
interferometers are 
currently operating at 
or near design 
sensitivity
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The road to design sensitivity…
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LIGO time line

1999

4K strain noise Now

2000 2001 2002 2003
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

E2
Engineering E3 E5 E9 E10E7 E8 E11

First Lock Full Lock all IFO 

10-17 10-18 10-20 10-21

2004 2005
1 2 3 4 1 2 3 4 1 2 3 4

2006

First 
Science 
Data

S1 S4Science S2 RunsS3 S5

10-22 at 150 Hz [Hz-1/2]

• Starting in August of 2002, LIGO initiated periods of science 
runs separated by periods of commissioning work.

2007
21
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LIGO science runs and sensitivities 

S1: 23 Aug –
9 Sep ‘02

S2: 14 Feb – 14 
Apr ‘03

S3: 31 Oct ‘03 – 9 
Jan ‘04

S4: 22 Feb – 23 
Mar ‘05

S5: 4 Nov ‘05 – in 
proress

Goal is to “collect 
at least a year’s 
data of 
coincident 
operation at the 
science goal 
sensitivity”

Expect S5 to end 
in Fall 2007

S5 is not 
completely 
‘hands-off’
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Noise anatomy
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Performance of the detectors

• Detectable range to randomly oriented 1.4, 1.4 solar mass 
binary neutron star inspiral at an SNR of 8.

commissioning commissioningstuck optic
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S5 network observation time

Expected end of S5: ~September 2007

Shourov Chatterji Olga Petrova
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Breakdown of livetime loss

Dan Hoak
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Searching for gravitational wave bursts
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Searching for gravitational wave bursts 
with LIGO

• Four all-sky, all-times, searches using data from S1-S2-
S3-S4 completed and published
» Hierarchical approach: incoherent combination of statistically significant 

excesses in the three LIGO detectors, with coherent follow-up

» No detections made, upper limits on the flux of gravitational wave bursts 
at the instruments and interpretations in terms of rate vs strength made

• GRB-triggered searches in S2-S3-S4

• Currently in progress: analysis of S5 data
» Fully-coherent network methods

» Any two or more instruments coincidence livetime

» First look at 54 live-days in triple coincidence from Nov 17, 2005 to April 3, 
2006 part of the S5 run using the S1-S2-S3-S4 methodology
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Burst search: a time-frequency method

• Compute time-frequency decomposition in a Fourier or wavelet basis
• Threshold on power in a pixel; search for clusters of pixels
• Basic assumption: multi-interferometer response consistent with a plane 

wave-front incident on network of detectors:
» use temporal coincidence of the 3 interferometer’s  ‘loudest pixels’
» correlate frequency features of candidates (time-frequency domain analysis)
» check consistency of the signal amplitude
» test the list of coincident event candidates for waveform consistency (correlation) 

between signals from three LIGO interferometers.
• End result of analysis pipeline: number of triple coincidence events
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Tuning and selection strategy
• Analyses are “blind”

» Time-shifted data (100 times, about 13.5 years of equivalent triple 
coincidence running) and software signal injections are used for deciding on 
all analysis cuts

• Thorough data quality and vetoes study
» Tuning based on single-instrument triggers or time-shifted coincidence data

• Select tiles in the 60-1600Hz 

ln(Zg)

Zg = combined 
significance of 

excess power in 
the three 
individual 
detectors

• Threhold on their 
significance

• Apply data quality and 
vetoes

• Apply waveform-
consistency cuts
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Role of data quality and vetoes:
An example of calibration malfunction

Category 1 Data quality flag
Dead-Time ~ 0.02 %

Gravity wave channel

Channel which 
contains injected 
calibration line
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Power line, magnetic glitches

• Coincidence analysis and event classification has 
provided evidence of events resulting from extreme power 
line glitches reflected all across the H1-H2 instruments



Example: Seismic Noise

• Transient seismic noise  < 10Hz getting up-converted into LIGO band

Excess Seismic noise
Category-3 Data quality flag
Dead-Time ~ 0.6 %

Hanford Y-end  seismometer 
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H1-H2 Consistency Checks

• Require:
» Estimated amplitudes must agree within a factor of two
» Signals must be positively correlated

Background events from
100 LHO-LLO time-slides

Simulated events corre-
sponding to sine-Gaussians
of Q=8.9, 3 
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L1-H1 Cut

Background events from
100 LHO-LLO time-slides

Simulated events corre-
sponding to sine-Gaussians
of Q=8.9, 3 

• Require:
» H1-L1 cross-correlation coefficient be >3 (less than 0.1% 

probability to get the measured linear cross-correlation from 
uncorrelated noise at L1 and H1)
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Background events before any cuts

Combined significance of 
excess power in the three 

individual detectors

Combined significance of 
correlation in the three 

detector pairs
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Combined significance of 
correlation in the three 

detector pairs

Combined significance of 
excess power in the three 

individual detectors

Background events after data quality 
and analysis cuts
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Empirically chosen, 
frequency-dependent 
threshold on Γ

~1/(f-64Hz) in 100-300Hz,   
4 at high frequency,    
6 at low frequency 

Target rate of accidentals: 
<< 1 per analysis period
Expect 0.06 in early S5, 
0.4/year

Frequency Dependent Threshold

100 LHO-LLO time-slides, equivalent to 13.5 years of triple coincidence data

Background events from
100 LHO-LLO time-slides
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Preliminary detection efficiency and 
upper limit reach for initial part of S5
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Mass equivalence:
order of magnitude analysis

• Instantaneous energy flux:

• Integrate over signal duration and over a sphere at 
radius r assuming a sine-gaussian signal of frequency f0  
and quality factor Q:

• Assume for a sine-Gaussian-like signal, 153 Hz, Q=8.9,
hrss at 50% efficiency is 6.5 x 10–22 Hz–1/2

» 2 x 10–8 M emitted at 10 kpc
» 0.05 M emitted at Virgo Cluster
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Toward coherent searches:
the “Q” pipeline search

•Multi-resolution time-frequency search for GW bursts
•Looks for statistically-significant excess signal energy
•Takes advantage of co-located Hanford detectors (H1, H2)

» Power-weighted “coherent sum” (H+) maximizes signal from GW bursts
» Differential “null stream” (H-) should be consistent with detector noise

•Search for Livingston (L1) events coincident with H+ events
H+ coherent sum H– null stream
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~10% increase in SNR consistent with noise
Shourov Chatterji
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Astrophysical waveforms

• Zwerger-Müller (Astron. Astroph. 
1997)
» 2D hydrodynamical model enforcing 

axisymmetry of the rotating star
» Waveforms sample initial angular 

momentum, rotational energy and 
adiabatic index

• Dimmelmeier, Font and Müller
(Ap J Lett 2001)
» relativistic effects included

• Ott, Burrows, Livne, Walder, (Ap
J 2004)
» Updated progenitor models and nuclear 

EoS
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Astrophysical waveforms and LIGO

• Widely varying signal morphologies and relevant strengths
• Lasting from fraction of a 1ms to 10-100 ms
• Not all of them have enough power in instruments’ sensitive band
• They are distance calibrated

optimally oriented and 
polarized SN waveforms at 
100pc during LIGO S2 run

LIGO S2 RUN (2003)
PRD 2005

LIGO TODAY
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…and a new mechanism!

• Burrows, Livne, Dessart, Ott, Murphy (ApJ 2006) and 
Ott, Burrows, Dessart, Livne (PRL 2006)
» Axisymmetric simulations with non-rotating progenitor
» In-falling material eventually drives oscillations of the core
» Hundreds of ms after the bounce and lasting several hundred ms

Ott, Burrows, Lessart, Livne, PRL 2006
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Searching for bursts associated with 
GRBs

• Search LIGO data surrounding GRB trigger using cross-
correlation method

• No GW signal found associated with 39 GRB GRB in S2, 
S3, S4 runs and limits on GW signal amplitude were set

• 53 GRB triggers for the 
first five months of LIGO 
S5 run

• Typical S5 sensitivity at 
250 Hz: EGW ~ 0.3 Msun at 
20 Mpc

• Also, searched for GW 
emission associated with 
the Soft Gamma Repeater 
1806-20 – no signal found
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The path to gravitational wave astronomy

“Are we there yet?” cartoon from http://media.bestprices.com/

http://media.bestprices.com/
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Individual detectors        global network

AURIGA, Nautilus, 
Explorer bars

ALLEGRO
Baton Rouge LA
1 Bar detector

• Several km-scale 
detectors and bars 
are now in operation 

• Network gives:
» Detection confidence
» Sky coverage
» Duty cycle
» Direction by 

triangulation and fully 
coherent analysis

» Waveform extraction

• LIGO-GEO (LSC) 
and VIRGO have 
completed 
negotiations to 
analyze data jointly
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Detections         astrophysics

)()()()( ,, iiiiii dthFdthFtnts −+−+= ××++

• The inverse problem:

• At least three detector sites are needed in order to extract source 
waveform information

• Fully coherent analyses
» Maximum likelihood (“null stream”)
» Regularized likelihoods
» Improved consistency tests
» Maximum entropy

• Recovery of the waveform is essential for the study of the astrophysics 
of the sources:

» Equation of state polytropic index, differential rotation, rotational kinetic energy

Detector output Our goal Our goalAntenna factor Antenna factornoise
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Source localization

• Geometry of the network:
» Time delays between any two detectors 

define a ring on the sky
» For a 3-detector network these ring 

intersect in two locations
» Degeneracy can be resolved by 

examining amplitudes

• Automatic in fully coherent 
analyses: the sky position that 
minimizes χ2  

• Fully coherent and incoherent data 
analysis techniques for detection, 
glitch rejection, waveform extraction 
and source location being applied to 
the LIGO-GEO-VIRGO data

Chatterji et al, PRD 2006

cosθ= cΔt/D
Δθ~0.5 deg
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Present          advanced detectorsPresent          advanced detectors
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Challenges for advanced detectors

• Extending bandwidth of resonant mass detectors
• Reducing noise to the level of interferometers
• Seismic isolation
• Thermal noise suppression
• High power lasers
• Thermal lensing effects in optical components
• Mirror coatings
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VIRGO+

• 50 W laser, 
F=150 cavities

• Low loss suprasil
end mirrors

• Monolitic
suspensions

1 10 100 1000 10000
10-23

10-22
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 50W/2 + new losses model
 50W/2 + new losses model + F=150
 50W/2 + current mirrors
 Nominal Virgo
 50W/2 + new losses mod+FS suspensions+F=150
 Virgo+ with Newtonian Noise

NN

Shot noise decreased
Thermal noise decreased

• Modest updates within 
the 2008-2009 window
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Advanced LIGOAdvanced LIGO

Advanced
 LIGO

• Factor 10 better amplitude 
sensitivity
» (Reach)3 = rate

• Factor 4 lower frequency bound
• Infrastructure of 

initial LIGO but replace many 
detector components with new 
designs

• Increase laser power in arms.
• Better seismic isolation.

» Quadruple pendula for each mass
• Larger mirrors to suppress thermal noise.
• Silica wires to suppress suspension thermal noise.
• “New” noise source due to increased laser power: radiation pressure noise.
• Signal recycling mirror: Allows tuning sensitivity for a particular frequency range.
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Timeline of advanced 
instruments

ELI INST/COMM S6 AdL INSTALL AdL COMMISSIONS5 S7

2007 2008 2009 2010 2011 2012 2013 2014 2015

• AdvLIGO was approved by the US-NSB in 2004.
• It is in the President’s budget for start in 2008!

now



LIGO-G070374-00-Z
53

• A global network of gravitational wave detectors is recording 
data at an unprecedented sensitivity ever and we are working 
together to get the most out of data

• New upper limits are being set for the major sources of 
gravitational wave sources: binary inspirals, periodic sources, 
burst sources and stochastic background. 

• Getting ready to transition from upper limits to first detections 
and source astrophysics

• Next generation detectors and upgrades of existing ones that 
will bring guaranteed sources are planned or getting 
underway

Conclusions
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