

The LIGO input optics

D.B. Tanner, M.A. Arain, A. Lucianetti, R. Martin, V. Quetschke, L.F. Williams, Wan Wu, G. Mueller, and D.H. Reitze

University of Florida

- 1. IO for initial LIGO
- 2. IO for enhanced LIGO
- 3. IO for advanced LIGO

Supported by NSF grant PHY-0555453

IOO = "input optics"

LIGO-G070296-00-R

- The Input Optics conditions the light from the pre-stabilized laser, sending it to the main interferometer
- » Phase modulation
 - Electro-optic modulators
- » Interferometer power control
 - Continuous variable attenuation
- » Spatially and temporally filter the light
 - Mode cleaner
- » Optical isolation + diagnostic signals
 - Faraday isolator
- » Mode match into the interferometer
 - Adaptive beam-expanding telescope

RF modulators

LIGO-G070290-00-K

Mode cleaner: SOS

SOS = small optics suspension.

Mirrors are 3 inch diameter, 1 inch thick.

- Hung by a single loop of 0.0017 inch diameter steel wire.
- Mirrors have magnets glued to their backs
- Coils on frame can push, tip, tilt the mirrors.
- Safety stops all around to catch mirror if the wire breaks.
- Several did during the 2001 Olympia earthquake.

Faraday isolator

LIGO-G070296-00-R

Parts installed in vacuum chambers LIGO UNIVERSITY OF with incredible precision

HAM 1

	Laser Power (W)	EOM type	Freqs (MHz) H1/L1	Mod index (nom)	Configs	MC Suspen sions	PRC	Faraday type
LIGO	8	vFocus LiNbO ₃	24.5 61.2 33.3 (mc)	0.5 0.05 0.05	3x	SOS single	Marginal	EOT TGG
eLIGO	30	UF RTP	24.5 61.2 33.3 (mc)	0.5 0.05 0.05	1x, 3 elec- trodes	SOS single	Marginal	IAP TGG Qtz TGG
Adv LIGO	180	UF RTP	9 45/63/180 TBD	0.8! 0.8! TBD	Baseline: Mach Zehnder	MC Triple	TBD: Stable or marginal	IAP TGG Qtz TGG

RF Modulation

- Requirements:
 - » Amplitude and phase stability:
 - Amplitude: differential radiation pressure noise due to arm cavity carrier imbalance
 Δm < (10⁻⁹/m)(f/10 Hz)/rtHz
 - Phase: no direct coupling for DC readout, but possible couplings through auxiliary loops
- Rubidium titanyl phosphate (RTP)
 - » Electro-optic response similar to LiNbO₃
 - » low absorption \rightarrow low thermal lensing
- In-house design and build
 - » Matching circuit in separate housing
- Modified version for eLIGO upgrade

Mueller, LIGO T020022 (2002). Mueller, et al., LIGO T020025 (2002). UFGroup, LIGO E060003 (2006).

L-V Pisa May 07

LIGO-G070296-00-R

eLIGO: 3 frequencies / 1 crystal

UNIVERSITY OF

Assembled modulator

 Separate the crystal housing from the housing of the electronic circuits to maintain maximum flexibility.

LIGO-G070296-00-R

- Measure with 10 V_{pp} drive, 23.5 & 70 MHz.
 - » $m_{23.5} = 0.29$
 - » $m_{70} = 0.17$

AdvLIGO: Mach-Zehnder

- Modulation architecture needed to eliminate cross products
 - » Mach-Zehnder architecture
 - Requirement: differential arm motion → carrier-sideband phase noise → common mode frequency noise:
 - $\rightarrow \Delta L \sim 7 \times 10^{-14} \text{ m/rHz}$ in 20 80 Hz band
 - » Complex (AM/PM) modulation

LIGO

- Faraday rotator
 - » Two 22.5° TGG-based rotators with a reciprocal 67.5° quartz rotator between
 - » Polarization distortions from the first rotator compensated in the second.
 - » 1/2 waveplate to set output polarization.
 - » Thermal lens compensation: negative *dn/dT* material: deuterated potassium dihydrogen phosphate, KD₂PO₄, or 'DKDP').
- Calcite wedges or TFP polarizers
- Will be used in eLIGO upgrade

- TGG and quartz crystals all in large magnet housing
- TFP's on stands, orientation controlled by mechanical design
- DKDP compensator on fixed stand
- 1/2 wave plate on CVI vacuum-compatible rotator

FI set up at LLO

- Suppression is set by the polarizers.
- Calcite wedge polarizer superior to thin film
 Brewster's polarizer

UNIVERSITY OF

Effect of vacuum

- Initial vacuum testing reveals drop in isolation ratio under vacuum
 - » from >47 dB to < 30 dB (@100 W)
- It's all temperature
 - » Thermal contact of TGG and housing undergoing re-design
- Thermal time constant ~ 45 mins
- Isolation recovers with < 1° rotation of waveplate

Thermal model

- Isolation ratio (dB)
- -> FI transmission ${\mathcal T}$
- -> Polarization angle, from
 - $\mathcal{T} \sim \cos^2(\theta)$ around $\theta = 90^0$
- -> Verdet constant vs. time, from V = θ/(B*L)
- -> Temperature from known dV/dT
- Then the time dependence fits to $T(t) = T_o + \Delta T^* [1 - \exp(-t/\tau)]$
- τ ~ 50-100 mins

Stable recycling cavities

Stable PRC layout

• Power recycling cavity:

 $f_{prc} = (k + 1/2)c/2L_{prc} \ (k = 0, 1, 2, ...)$

- Factor of 1/2 occurs because the carrier is resonant in the arms; sidebands are not
- Input mode cleaner

 $f_{imc} = nc / 2L_{imc}$ (n = 1,2,3, ...)

Signal recyling cavity

 $f_{src} = (p + d\phi/2\pi)c/2 L_{src} \ (p = 1, 2, ...)$

- Allows 9.3996 & 46.9979 MHz
- See "Optical Layout for Advanced LIGO," D. Coyne, LIGO-T010076-010D (7/1/2001)

- It does all fit, though HAM 2 will be full
- Beam injection TBD
- IO for eLIGO:
 - » Under construction
- IO for adv LIGO:
 - » PDR underway

