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Gravitational WavesGravitational Waves

• Predicted by Einstein’s General Theory of Relativity
• Analogous to electromagnetic waves

•Quadrupolar source (graviton spin 2)
•Newton’s G very small compared to Coulomb’s k

• Need large masses moving fast
• Astronomical sources
• Compact bodies

• Strain in space
• h = Δ l / l = 10-21

• Need long baseline
• 10-18 m over 1 km
• 10-14 m over 104 km

Hulse and Taylor

• Binary pair of pulsars 
• Orbit is slowly decaying
• Data from 1975 – present
• Gravitational waves 

• Decay of orbit
• Line is prediction, not fit

• Nobel prize 1993
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Astronomical Sources of Astronomical Sources of 
Gravitational WavesGravitational Waves

t ime 
h 

Stochastic Background
• Incoherent sum of inspirals
• Background from the Big Bang

• Probes further back than CMB
• Signature of inflationary models

Compact Body Inspirals
• Neutron Stars f < 500 Hz
• Black Holes f < 300 Hz
• White Dwarves f < 1 Hz

Bursts and Continuous Wave
• Important at high frequencies
• Bursts from supernova
• CW from pulsars

Asymmetric pulsar Supernova 1987A

Waveform from inspiral
Inspiraling masses
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EarthEarth--based Gravitational based Gravitational 
Wave DetectorsWave Detectors

Resonant Mass (Bar) Detectors
• 1960’s -1990’s 
• Low sensitivity
• Very high frequency (~ 1 kHz)
• Narrow bandwidth (~100 Hz)
• Cryogenic
• Obsolete now

Interferometers
(LIGO, Virgo, GEO600, TAMA)
• 1980’s – today
• 4 km long arms
• High sensitivity
• High frequency (~ 10 Hz - 3 kHz)
• Wide bandwidth
• Taking data now
• No detections, interesting upper 

limits

AURIGA Antenna LIGO Livingston Observatory



SpaceSpace--based Gravitational based Gravitational 
Wave DetectorsWave Detectors

Laser Interferometer Space-based 
Antenna (LISA)

• Being developed now
• Launch date ~ 2018
• 3 spacecraft
• 5 X 109 m long arms
• Low frequency (0.1 mHz – 1 Hz)
• Arms are not cavities, uses time

delay interferometry

• Low frequency dominated by 
acceleration noise on test masses

• Middle range limited by shot noise
• Need more laser power

• High frequency limited by arm length 
being longer than wavelength

• Changes with arm length
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Big Bang ObserverBig Bang Observer

LISA Advanced 
LIGO

Big Bang 
Observer

Initial LIGO

BBO Stage 1

Models of Inflation 
after Big Bang

Advanced LIGOLISA

BBO Stage 2

Need Big Bang Observer to fill in gaps

• Must be space-based to get f < 10 Hz
• Seismic noise limiting on Earth

• Shorter arms than LISA f > 100 mHz
• Higher laser power for greater shot

noise limited sensitivity
• Also improved acceleration noise

Incomplete Detector Array

• Sensitivity gap between Advanced 
LIGO and LISA

•100 mHz – 10 Hz
• May not have sensitivity to detect
background from Big Bang

• LISA - too little sensitivity
• LIGO - too high frequency



8

BBO OverviewBBO Overview

• 3 spacecraft 
• 5 X 107 m arm length
• Solar orbit at 1 AU

• Constellation makes one rotation 
every year

• 10 kg drag-free masses 
• Launch in 2025 (?)
• Follow on missions possible

• More spacecraft
• More constellations
• Higher power lasers

• 2 lasers per spacecraft
• Each laser 300 W at 355 nm 
• Local laser interfered with laser from

other spacecraft
• Arm lengths controlled to keep on dark

fringe
• More like LIGO than LISA
• Reducing power handling requirements

on photodiode
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BBO StatusBBO Status

• No active BBO mission within NASA 
• Currently no ongoing BBO research
• 2005 NASA collected a team to look at 

BBO technologies
• Part time
• Mostly LIGO and LISA scientists

• Designed to determine where NASA research
efforts should be focussed

• Which technologies are mature?
• Which technologies are advancing?
• Which crucial technologies need support?
• Where can LISA solutions be used?

• Beyond Einstein Program (including LISA)
being reviewed by NASA 

• Changing priorities away from basic science
• Manned trip to Mars is expensive
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Optical Components Optical Components -- 11
• 2 lasers per spacecraft 

• 300 W output
• Possibly delivered from other board

• Fabry-Perot cavity
• Passive mode cleaner to stabilize 

beam direction and mode
• Reference for frequency stabilization
• Finesse of ~ 100, trade-off between 

shot noise and transmission
• 3 beams picked off

• 16 W for sensing of local test mass
• 8 W for interfering with incoming beam
• 1 mW used to phase lock lasers

• Outgoing beam expanded to ~ 1 m
• Incoming beam reflected off of test 

mass before interference
• Incoming beam Airy disk while local 

beam Gaussian
• Contrast defect goal ~ 10-4
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Optical Components Optical Components -- 22

• 16 W local sensing beam
• Controls linear DOF of spacecraft
• Quad photodiodes allow for angular 

DOF control
• Balances DC radiation pressure from  

incoming beam 
• AC pressure causes acceleration noise 

• RF modulation needed for locking
• Separate frequency for each laser

of order ~ 10 MHz
• 2 possibilities to apply sidebands
• Before FP cavity – cavity must 

pass RF control signal
• After FP cavity – EOM must 

handle full 300 W of power
• Photodiode requirements

• High power handling (~2 mW) 
• High quantum efficiency (~ 0.6)
• Low capacitance for RF modulation
• Quad elements for angular control
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Control SchemeControl Scheme

Frequency Control

• Arm between S/C 1 and 3 used as stable
frequency reference

• Laser 1R locked to this reference 
• Laser 1L locked to laser 1R
• Laser 2R locked to laser 1L
• Laser 3L locked to laser 1R

Position Control of Test Masses

• Test mass 1 controlled in direction 1-2
• Test mass 2 uncontrolled

• Could be actuated on in direction 
1-3 to get additional signal

• Test mass 3 controlled in direction 2-3
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Laser Shot NoiseLaser Shot Noise

Sx (f) = h c λ3 L2 / ( 2 π2 η P D4 )

h, c, π - Planck’s constant, speed of light, pi
λ - laser wavelength
L - arm length
η - photodiode quantum efficiency
P - laser power
D - mirror diameter (collection ability)

Need low wavelength, high efficiency, high 
power, and large mirrors

•Largest mirrors that fit in launch vehicle
• 2 X 2.5 m, all 3 fit in Delta IV

• Only things to improve are λ, η, and P
• Nd:YAG laser at 1064 nm 

• Frequency and intensity 
stabilization well understood

• Frequency tripling practical limit
• 300 W seems achievable

• 200 W for Advanced LIGO
• Must be space qualified

Advanced LIGO Nd:YAG Injection 
Locked End Pumped Rod Laser

BBO Spacecraft

2.5 m diameter 
mirrors



• Relative Intensity Noise (RIN)
• 10-8/√Hz at 100 mHz
• Set by AC radiation pressure
• 10-6/√Hz at 100 mHz shown by LIGO
• If EOM before Fabry-Perot cavity, no 

reduction of RIN 
• Frequency noise set by arm imbalance

• Δ L = 1 m or better by using radio link 
• δ f / f = 10-3 Hz/√Hz

• Active frequency stabilization to the Fabry-
Perot cavity 

• 0.3 Hz/√Hz (limited by thermal noise)
• Further reduction by stabilizing to arm

• Proposed for LISA

BBO Laser Noise BBO Laser Noise 
RequirementsRequirements

Advanced LIGO Laser Relative 
Intensity Noise (RIN)
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Thermal Noise and Thermal Noise and 
Materials IssuesMaterials Issues

• Brownian motion of mirrors in cavity 
limits frequency stabilization

• Mirror coatings crucial
• Need to use low mechanical loss coatings

• Fluctuation-Dissipation Theorem 
• Mechanical loss causes Brownian motion

• Most metals have high mechanical loss
• Gold/Platinum used by LISA

• Coating thermal noise also problem for LIGO
• Low mechanical loss dielectric coatings

under development
• Magnetic properties unknown

• Test mass material also important
• 10 kg
• Low mechanical loss
• Low magnetic susceptibility
• Control of charge build up

LISA Test Mass

LIGO Coated Optic



Required TechnologiesRequired Technologies
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• Laser
• Power 300 W
• Frequency tripled Nd:YAG
• RIN < 10-8 /√Hz at 100 mHz (LIGO)
• Frequency noise < 10-3 Hz/√Hz (LISA)

• High power optical components
• EOM that takes 300 W
• Photodiodes

• High quantum efficiency at 355 nm 
• 2 mW with low capacitance (LIGO)

• Materials
• Low thermal noise coatings (LIGO)
• Low magnetic susceptibility test mass

• Techniques
• Frequency stabilization to long arm (LISA)
• Low acceleration noise actuators (LISA)
• All hardware space qualified (LISA)

LIGO Commissioning

LISA Pathfinder
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ConclusionsConclusions

• Gravitational wave detection is a promising, emerging field
• Gravitational wave astronomy will open new window on universe
• Space based detectors are crucial to getting a full view of the

gravitational wave sky
• Big Bang Observer will fill an important future roll
• Plan for how to do BBO interferometry
• Many technologies must be developed for successful BBO mission
• High power, low wavelength laser is crucial 

• P = 300 W
• λ = 355 nm
• Very low intensity and frequency noise

• Photodiodes, EOMs, improved materials, etc. also important
• Have until 2025 or later to develop these

• Very challenging, need to start soon 
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