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Gravitational Waves
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Astronomical Sources ol
Gravitational Waves

e Compact Body Inspirals -

C e Neutron Stars f < 500 Hz | (ARt
e Black Holes f < 300 Hz
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Bursts and Continuous Wave
e Important at high frequencies
e Bursts from supernova
e CW from pulsars
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arth-based Gravitationa

Power Recycled
Michelson
Interferometer
with Fabry-Perot
Arm Cavities

recycling

Wave Detectors

Resonant Mass (Bar) Detectors
e 1960’s -1990°’s

e Low sensitivity

= Very high frequency (~ 1 kHz)

e Narrow bandwidth (~100 Hz)

e Cryogenic

e Obsolete now

LIGO Living

end test mass

Interferometers
(LIGO, Virgo, GEO600
e 1980’s - today

e 4 km long arms

e High sensitivity

4 km (2 km) Fabry-Perot
arm cavity

mirror \‘ input test mass e High frequency (= 1

Laser

e Wide bandwidth
e Taking data now
beam splitter  No detections, Inte
limits




Space-based Gravitational
Wave Detectors

. - Laser Interferometer Space-base
G 3
s — Antenna (LISA)
- : - e Being developed now
~ ~ e Launch date ~ 2018
| - 3 spacecraft
\ 72 e 5 X 10° m long arms
\ e e Low frequency (0.1 mHz - 1 Hz)
@ e Arms are not cavities, uses time
w Spacecraft #1

delay interferometry
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Big Bang Observer
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BBO Overview

er spacecraft
r 300 W at 355 nm
Ir interfered with laser from
cecraft
hs controlled to keep on dark

ike LIGO than LISA
ing power handling requirements
otodiode

e 3 spacecraft
e 5 X 107 m arm length
e Solar orbit at 1 AU
e Constellation makes one rot
every year
10 kg drag-free masses
e Launch in 2025 (?)
e Follow on missions possible
e More spacecraft
e More constellations
e Higher power lasers




BBO Status

e BBO mission within NASA
y no ongoing BBO research
SA collected a team to look at

hnologies

e
LIGO and LISA scientists

to determine where NASA research

hould be focussed

echnologies are mature?
echnologies are advancing?

rucial technologies need support?
can LISA solutions be used?

Einstein Program (including LISA)
viewed by NASA

g priorities away from basic science
trip to Mars is expensive



tical Components
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tical Components

nsing beam

ear DOF of spacecraft
diodes allow for angular
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C radiation pressure from
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e causes acceleration noise
n needed for locking

equency for each laser
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300 W of power
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um efficiency (~ 0.6)
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Control Scheme
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Laser Shot Noise
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| eLargest mirrors that fit in
e2X2.5m, all 3 fitin

e Only things to improve a

e Nd:YAG laser at 1064 nm

e Frequency and intensit

VAG I N-YAG 1 YAG stabilization well under
KT e Frequency tripling pract
e 300 W seems achievabl
Nd:YAG Injection e 200 W for Advanced
mped Rod Laser e Must be space quali




BBO Laser Noise
Requirements

ity Noise (RIN)
100 mHz

adiation pressure
100 mHz shown by LIGO

re Fabry-Perot cavity, no
f RIN

e set by arm imbalance

r better by using radio link
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cy stabilization to the Fabry-

(limited by thermal noise)
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Thermal Noise and
Materials Issues

motion of mirrors in cavity
guency stabilization

r coatings crucial

se low mechanical loss coatings
uation-Dissipation Theorem
anical loss causes Brownian motion
als have high mechanical loss

Platinum used by LISA
hermal noise also problem for LIGO
echanical loss dielectric coatings
r development
etic properties unknown
material also important

echanical loss

agnetic susceptibility
ol of charge build up

LIGO Coated Optic



oow
cy tripled Nd:YAG
8 //Hz at 100 mHz (LIGO)

cy noise < 103 Hz//Hz (LISA)
optical components

quantum efficiency at 355 nm
W with low capacitance (LIGO)

rmal noise coatings (LIGO)
gnetic susceptibility test mass

cy stabilization to long arm (LISA)
eleration noise actuators (LISA)
ware space qualified (LISA)

LIGO Commis
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Conclusions

nal wave detection is a promising, emergin
nal wave astronomy will open new window
ed detectors are crucial to getting a full vi
nal wave sky

bserver will fill an important future roll
ow to do BBO interferometry

nologies must be developed for successful
r, low wavelength laser is crucial

w intensity and frequency noise

es, EOMs, improved materials, etc. also im
| 2025 or later to develop these
hallenging, need to start soon




