The Big Bang Observer: High Laser Power for Gravitationalwave Astrophysics

Gregory Harry, Peter Fritschel LIGO Laboratory, Massachusetts Institute of Technology

Daniel Shaddock, William Folkner Jet Propulsion Laboratory, California Institute of Technology

> E Sterl Phinney California Institute of Technology

May 10, 2007 PhAST – Baltimore MD

LIGO-G070254-00-R

Outline

- Brief Introduction to Gravitational Waves
 - Astronomical Sources
- Detection of Gravitational Waves
 - Indirect
 - Direct Earth based and Space based
- Big Bang Observer Overview and Status
- BBO Optical Components
- BBO Control Scheme
- BBO Laser
 - Shot Noise
 - Other Noise Requirements
- Materials Issues
 - Coating Thermal Noise
- Technology Research Needs
- Conclusion

Gravitational Waves

- Predicted by Einstein's General Theory of Relativity
- Analogous to electromagnetic waves
 - •Quadrupolar source (graviton spin 2)
 - •Newton's G very small compared to Coulomb's k
- Need large masses moving fast
 - Astronomical sources
 - Compact bodies
- Strain in space
 - *h* = ∠ / / / = 10⁻²¹
 - Need long baseline
 - 10⁻¹⁸ m over 1 km
 - 10⁻¹⁴ m over 10⁴ km

Hulse and Taylor

- Binary pair of pulsars
- Orbit is slowly decaying
- Data from 1975 present
- Gravitational waves
 - Decay of orbit
 - Line is prediction, not fit
- Nobel prize 1993

Astronomical Sources of Gravitational Waves

Compact Body Inspirals

- Neutron Stars *f* < 500 Hz
- Black Holes *f* < 300 Hz
- White Dwarves *f* < 1 Hz

Waveform from inspiral

Inspiraling masses

Stochastic Background

- Incoherent sum of inspirals
- Background from the Big Bang
 - Probes further back than CMB
 - Signature of inflationary models

Asymmetric pulsar

Bursts and Continuous Wave

Important at high frequencies

of our universe

- Bursts from supernova
- CW from pulsars

Supernova 1987A

Earth-based Gravitational Wave Detectors

AURIGA Antenna

Resonant Mass (Bar) Detectors

- 1960's -1990's
- Low sensitivity
- Very high frequency (~ 1 kHz)
- Narrow bandwidth (~100 Hz)
- Cryogenic
- Obsolete now

LIGO Livingston Observatory

Interferometers (LIGO, Virgo, GEO600, TAMA) • 1980's - today • 4 km long arms • High sensitivity

- High frequency (~ 10 Hz 3 kHz)
- Wide bandwidth
- Taking data now
- No detections, interesting upper limits

Space-based Gravitational Wave Detectors

- Low frequency dominated by acceleration noise on test masses
- Middle range limited by shot noise
 - Need more laser power
- High frequency limited by arm length being longer than wavelength
 - Changes with arm length

Laser Interferometer Space-based Antenna (LISA)

- Being developed now
- Launch date ~ 2018
- 3 spacecraft
- 5 X 10⁹ m long arms
- Low frequency (0.1 mHz 1 Hz)
- Arms are not cavities, uses time delay interferometry

Big Bang Observer

Incomplete Detector Array

- Sensitivity gap between Advanced LIGO and LISA
 - •100 mHz 10 Hz
- May not have sensitivity to detect background from Big Bang
 - LISA too little sensitivity
 - LIGO too high frequency

Need Big Bang Observer to fill in gaps

- Must be space-based to get f < 10 Hz
 - Seismic noise limiting on Earth
- Shorter arms than LISA f > 100 mHz
- Higher laser power for greater shot noise limited sensitivity
- Also improved acceleration noise

BBO Overview

- 2 lasers per spacecraft
- Each laser 300 W at 355 nm
- Local laser interfered with laser from other spacecraft
- Arm lengths controlled to keep on dark fringe
 - More like LIGO than LISA
 - Reducing power handling requirements on photodiode

- 3 spacecraft
- 5 X 10⁷ m arm length
- Solar orbit at 1 AU
 - Constellation makes one rotation every year
- 10 kg drag-free masses
- Launch in 2025 (?)
- Follow on missions possible
 - More spacecraft
 - More constellations
 - Higher power lasers

BBO Status

- No active BBO mission within NASA
- Currently no ongoing BBO research
- 2005 NASA collected a team to look at BBO technologies
 - Part time
 - Mostly LIGO and LISA scientists

- Designed to determine where NASA research efforts should be focussed
 - Which technologies are mature?
 - Which technologies are advancing?
 - Which crucial technologies need support?
 - Where can LISA solutions be used?
- Beyond Einstein Program (including LISA) being reviewed by NASA
 - Changing priorities away from basic science
 - Manned trip to Mars is expensive

Optical Components - 1

- 2 lasers per spacecraft
 - 300 W output
 - Possibly delivered from other board
- Fabry-Perot cavity
 - Passive mode cleaner to stabilize beam direction and mode
 - Reference for frequency stabilization
 - Finesse of ~ 100, trade-off between shot noise and transmission
- 3 beams picked off
 - 16 W for sensing of local test mass
 - 8 W for interfering with incoming beam
 - 1 mW used to phase lock lasers
- Outgoing beam expanded to ~ 1 m
- Incoming beam reflected off of test mass before interference
 - Incoming beam Airy disk while local beam Gaussian
 - Contrast defect goal ~ 10⁻⁴

Optical Components - 2

- 16 W local sensing beam
 - Controls linear DOF of spacecraft
 - Quad photodiodes allow for angular DOF control
 - Balances DC radiation pressure from incoming beam
 - AC pressure causes acceleration noise
- RF modulation needed for locking
 - Separate frequency for each laser of order ~ 10 MHz
 - **2 possibilities to apply sidebands**
 - Before FP cavity cavity must pass RF control signal
 - After FP cavity EOM must handle full 300 W of power
- Photodiode requirements
 - High power handling (~2 mW)
 - High quantum efficiency (~ 0.6)
 - Low capacitance for RF modulation
 - Quad elements for angular control

Control Scheme

Photodiode Interfering Lasers	Recipient of feedback	_
p1R L1R - L3L*	Laser L1R	Frea
rIR LIL - LIR*	Spacecraft 1	
r1L L1R L1L*	Speccreft 1	
p1L L1L L9R*	Tost mass 1 in 1-2 direction	 Arm between 5
pin nin-nzk	Test mass 1 m 1-2 direction	<i>c c</i>
p2R L2R - L1L*	Laser L2R	frequency refe
r2R L2L - L2R*	Spacecraft 2	
p2C L2L - L2R	Free for additional use	• Laser 1K lo
r2L L2R - L2L*	Spacecraft 2	
p2L L2L - L3R*	Laser L2L	 Laser 1L locked
PSR LSR - L2L*	Test mass 3 in 2-3 direction	• Laser ZK locke
PSR LSL - LSR	Spacecraft 3	
-91 L9D L9L*	Laser Lor	 Laser 3L locked
-9L L3R - L3L*	Spacecraft 3	
P3L L3L - L1R"	Laser L3L	
Laser mist bounces on or local te	50 11121585	

Position Control of Test Masses

- Test mass 1 controlled in direction 1-2
- Test mass 2 uncontrolled
 - Could be actuated on in direction
 - 1-3 to get additional signal

• Test mass 3 controlled in direction 2-3 s/C 2

uency Control

- 5/C 1 and 3 used as stable rence
 - cked to this reference
- d to laser 1R
- d to laser 1L
- d to laser 1R

Laser Shot Noise

$$S_x(f) = h c \lambda^3 L^2 / (2 \pi^2 \eta P D^4)$$

- h, c, π Planck's constant, speed of light, pi
- λ laser wavelength
- L arm length
- η photodiode quantum efficiency
- P laser power
- *D* mirror diameter (collection ability)

Need low wavelength, high efficiency, high power, and large mirrors

Advanced LIGO Nd:YAG Injection Locked End Pumped Rod Laser

BBO Spacecraft

- Largest mirrors that fit in launch vehicle
 - 2 X 2.5 m, all 3 fit in Delta IV
- Only things to improve are λ , η , and P
- Nd:YAG laser at 1064 nm
 - Frequency and intensity stabilization well understood
 - Frequency tripling practical limit
 - 300 W seems achievable
 - 200 W for Advanced LIGO
 - Must be space qualified

BBO Laser Noise Requirements

- Relative Intensity Noise (RIN)
 - 10⁻⁸/JHz at 100 mHz
 - Set by AC radiation pressure
 - 10⁻⁶/JHz at 100 mHz shown by LIGO
 - If EOM before Fabry-Perot cavity, no reduction of RIN
- Frequency noise set by arm imbalance
 - $\Delta L = 1$ m or better by using radio link
 - $\delta f / f = 10^{-3} \text{ Hz} / \text{JHz}$
- Active frequency stabilization to the Fabry-Perot cavity
 - 0.3 Hz/JHz (limited by thermal noise)
 - Further reduction by stabilizing to arm
 - Proposed for LISA

Advanced LIGO Laser Relative Intensity Noise (RIN)

Thermal Noise and Materials Issues

- Brownian motion of mirrors in cavity limits frequency stabilization
 - Mirror coatings crucial
- Need to use low mechanical loss coatings
 - Fluctuation-Dissipation Theorem
 - Mechanical loss causes Brownian motion
- Most metals have high mechanical loss
 - Gold/Platinum used by LISA
- Coating thermal noise also problem for LIGO
 - Low mechanical loss dielectric coatings
 under development
 - Magnetic properties unknown
- Test mass material also important
 - 10 kg
 - Low mechanical loss
 - Low magnetic susceptibility
 - Control of charge build up

LISA Test Mass

LIGO Coated Optic

Required Technologies

• Laser

- **Power 300 W**
- Frequency tripled Nd:YAG
- RIN < 10⁻⁸ //Hz at 100 mHz (LIGO)
- Frequency noise < 10⁻³ Hz/JHz (LISA)
- High power optical components
 - EOM that takes 300 W
 - Photodiodes
 - High quantum efficiency at 355 nm
 - 2 mW with low capacitance (LIGO)
- Materials
 - Low thermal noise coatings (LIGO)
 - Low magnetic susceptibility test mass
- Techniques
 - Frequency stabilization to long arm (LISA)
 - Low acceleration noise actuators (LISA)
 - All hardware space qualified (LISA)

LISA Pathfinder

LIGO Commissioning

BBO Interferometry

"Laser Interferometry for the Big Bang Observer", G. M. Harry, P. Fritschel, D. A. Shaddock, W. Folkner, E. S. Phinney, *Classical and Quantum Gravity* 23 (2006) 4887.

BBO Astrophysics

"Beyond LISA: Exploring Future Gravitational-wave Missions", J. Crowder and N. J. Cornish, Physical Review D 72 (2005) 083005.

"Prospects for Direct Detection of Primordial Gravitational Waves", S. Chongchitnan and G. Efstathiou, *Physical Review D* 73 (2006) 083511.

LIGO

"Detector Description and Performance for the First Coincidence Observations between LIGO and GEO", B. Abbott et al., Nuclear Instrumentation and Methods in Physics Research A 517/1-**3** (2004) 154.

"Second Generation Instruments for the Laser Interferometer Gravitational-wave Observatory", P. Fritschel, in *Gravitational-Wave Detection*, M. Cruise and P. Saulson, Proceedings of SPIE **4856** (2003) 282291.

LISA

"Laser Development for LISA", M. Tröbs et al., Classical and Quantum Gravity 23 (2006) S151.

"LISA Interferometry: Recent Developments", G. Heinzel et al., *Classical and Quantum Gravity* **23** (2006) S119.

- Gravitational wave detection is a promising, emerging field
- Gravitational wave astronomy will open new window on universe
- Space based detectors are crucial to getting a full view of the gravitational wave sky
- Big Bang Observer will fill an important future roll
- Plan for how to do BBO interferometry
- Many technologies must be developed for successful BBO mission
- High power, low wavelength laser is crucial
 - *P* = 300 W
 - λ = 355 nm
 - Very low intensity and frequency noise
- Photodiodes, EOMs, improved materials, etc. also important
- Have until 2025 or later to develop these
 - Very challenging, need to start soon