

Science with LIGO

"Colliding Black Holes", Werner Berger, AEI, CCT, LSU

David Reitze Physics Department University of Florida Gainesville, FL 32611 For the LIGO Scientific Collaboration

LIGO-G070228-00-R

Outline

- The present: LIGO
 - » Gravitational waves, interferometry, sensitivity, science
- The future: Advanced LIGO
 - » Why AdvLIGO?
- The physics of Advanced LIGO
 - » Signal recycling
 - » SQL and thermal noise
 - » Springs, instabilities, and such
- The nuts and bolts of Advanced LIGO
 - » Improvements over LIGO
 - » Lasers, optics, seismic isolation, interferometer control, thermal management
- Outlook and Conclusions

Gravitational waves and astrophysics

- Predicted by Einstein in 1916, GWs are propagating fluctuations in the curvature of space-time
- Emissions from accelerating non-spherical mass distributions

$$h_{\mu\nu}(\omega,t) = \frac{2G}{rc^4} \ddot{I}_{\mu\nu}(\omega,t) \implies h \approx \frac{4\pi^2 GMR^2 f_{orb}^2}{c^4 r}$$

- » Propagate at the speed of light
- » Two polarizations: h_+ and h_x
- » Differential contraction and expansion along transverse axes
- Sense of scale: binary neutron star pair
 - » $M = 1.4 \text{ M}_{\bullet}, r = 10^{23} \text{ m} (15 \text{ Mpc}, \text{ Virgo}), R = 20 \text{ km}, f_{orb} = 400 \text{ Hz}$

→
$$h \sim 10^{-21}$$

LIGO-G070228-00-R

LIGO today

A snapshot of some recent results by the LIGO Scientific Collaboration

- Thus far, no detection of gravitational waves
- Summary of observational results in talk by Gabriela Gonzalez yesterday (E6.00003)
- Many results on searches of GW emissions from pulsars, binary NS/NS and BH/BH, stochastic sources, will be presented in sessions:
 - » R12, Gravitational Waves for and by LIGO (Monday, 10:45AM)
 - » T11, Gravitational Wave Astronomy (Monday, 1:30 PM)
 - » U11, Gravitational Wave Astronomy II and Compact Objects (Monday,3:30 PM)

LIGO

Advanced LIGO

- LIGO is currently detection ratelimited at 0.01 events per year for NS/NS inspirals
- Advanced LIGO will increase sensitivity (hence rate) over initial LIGO h(f) / Hz^{1/2}
 - range $r \sim h$ **》**
 - Event rate ~ r^3 **》**
- Most probable NS/NS event rate in Advanced LIGO is 40/yr
- Anticipate funding to start in October 2007, construction to begin in 2011

Advanced LIGO

LIGO

Advanced LIGO Detector Physics

LIGO-G070228-00-R

Signal recycling

• In LIGO, GWs modulate the laser field in the arm cavities

Concept: SR: Drever, 1983; Meers, 1988 RSE: Mizuno, 1993

- » monochromatic GWs \rightarrow GW 'side bands'
- » GW side bands leave the interferometer and beat against RF sidebands, generating a signal
- A 'signal recycling' mirror at the dark port forms a resonant cavity with the coupled arm cavities allowing build-up of the GW side bands
- Detuning the signal recycling cavity tunes the sensitivity curve and allows for enhanced sensitivity in a <u>narrow bandwidth</u>

LIGO-G070228-00-R

LIGO

LIGO Beyond the Standard Quantum Limit...

A. Buonanno and Y. Chen, PRD 64, 042006 (2001)

- Standard Quantum Limit
 - » competition between radiation pressure (RP) and shot noise (SN); limit given by

$$h_{SQL}(f) = \sqrt{\frac{8\hbar}{4\pi^2 f^2 L^2 M}}$$

- This assumes no correlations between SN and RP
- Signal recycling induces photon 'back-action' on mirrors
 - » Quantum noise is dynamically correlated, leading to h(f) < h_{SQL}(f) in a limited frequency range:

LIGO-G070228-00-R

... And back (thermal noise)

- Thermal noise in the suspensions, mirrors, and coatings degrades sensitivity
 - » Brownian and thermo-elastic noise
- Advanced LIGO is dominated by *Brownian thermal noise of the mirror coatings*

$$h_{Brownian} = \sqrt{2k_B T \phi_{eff}} \frac{1 - \sigma^2}{\pi^3 f w Y}$$

- Major effort under
 way to develop better
 coatings for Advanced
 LIGO
 - » 30% reduction in
 Brownian coating noise
 via doping of HR
 coatings with TiO₂

LIGO

Thermal effects in LIGO

- High quality low absorption fused silica substrates
 - » ~ 2 -10 ppm/cm bulk absorption

LIGO

- » ~ 1-5 ppm coating absorption
 - Different for different mirrors
 - Can change with time
- » All mirrors are different
- » Unstable recycling cavity
- Requires adaptive control of optical wavefronts
- ~100 mW absorption in current LIGO interferometers
 - » Effects are noticeable!
- Will be worse in AdvLIGO
 - » ~ 1 W absorbed power into input test masses

LIGO-G070228-00-R

Optical springs and instabilities

- Stored arm cavity power: 800 kW on resonance
 - » Radiation pressure on resonance:

 $F_{rad} = 2P_{cav}/c \sim 6 \text{ mN}$

- » Leads to (uncontrolled) $\Delta L \sim 10s \text{ of } \mu m$
- 3 types of potential instabilities
 - » Optical 'spring' effect

 From dynamic force as mirrors go through resonance Sheard, et al., Phys. Rev. A69 051801 (2004)

$$k_{tot} = k_{mech} + k_{opt}$$
$$k_{opt} = -\frac{d}{dx} \left[\frac{(2R_2 + A_2)T_1 P_{in}}{|1 - \sqrt{R_1 R_2} e^{-i(4\pi x/\lambda)}|^2 c} \right]$$

- » Angular 'tilt' Instabilities
 - From misaligned cavities:

Sidles and Sigg, Phys. Lett. A **354**,167-172 (2006)

» Parametric Instabilities

LIGO-G070228-00-R

LIGO

APS Meeting, April 15, 2007, Jacksonville, FL

 $\tau = \frac{2P_{cav}\Delta x}{2}$

Parametric instabilities

- Coupling of intracavity photon-acoustic modes
 - High intracavity powers excite acoustic modes in the mirrors (Stokes mode)
 - » Instability depends on

LIGO

- Intracavity power
- Substrate material
 - Speed of sound, mechanical Q
- Cavity parameters
 - Length, mirror RoC
- Parametric Gain; R> 1 leads to instability

$$R = \frac{2PQ_m}{mcL\omega_m^2} \left(\frac{Q_1\Lambda_1}{1 + (\Delta\omega_1/\delta_1)^2} - \frac{Q_{1a}\Lambda_{1a}}{1 + (\Delta\omega_{1a}/\delta_{1a})^2} \frac{\omega_{1a}}{\omega_1} \right)$$

V. B. Braginsky, et al., *Phys. Lett. A*, 305, 111, (2002); C. Zhao, et al, *Phys. Rev. Lett.* 94, 121102 (2005).

In AdvLIGO: mitigate via acoustic damping, thermal ROC tuning, 'tranquilizer' cavities

LIGO-G070228-00-R

Advanced LIGO Subsystems ('Nuts and Bolts')

LIGO-G070228-00-R

What is Advanced about Advanced LIGO?

Parameter	LIGO	Advanced LIGO
Input Laser Power	10 W	180 W
Mirror Mass	10 kg	40 kg
Interferometer Topology	Power-recycled Fabry-Perot arm cavity Michelson	Dual-recycled Fabry- Perot arm cavity Michelson
GW Readout Method	RF heterodyne	DC homodyne
Optimal Strain Sensitivity	3 x 10 ⁻²³ / rHz	Tunable, better than 5 x 10 ⁻²⁴ / rHz in broadband
Seismic Isolation Performance	<i>f_{low}</i> ~ 50 Hz	<i>f_{low}</i> ~ 10 Hz
Mirror Suspensions	Single Pendulum	Quadruple pendulum

LIGO-G070228-00-R

LIGO

Advanced LIGO pre-stabilized laser

Frede et al, Opt. Express 22 p459 (2007)

- 180 W amplitude and frequency stabilized Nd:YAG laser
- Two stage amplification
 - » First stage: MOPA (NPRO + single pass amplifier)
 - » Second stage: injection-locked ring cavity
- Developed by Laser Zentrum Hannover and MPI at Hannover
- Well along toward meeting performance specs
 - » Frequency, intensity, beam jitter noise

Relative Intensity Noise NPRO - vacuum - 2006/02/19

LIGO-G070228-00-R

Seismic isolation

- To open Advanced LIGO band at low frequencies, a complete redesign of the seismic isolation system is needed
- Required Isolation

LIGO

- » 10x @ 1 Hz
- » 3000x @ 10 Hz
- Active isolation, feed forward Horizontal FIR blending performance X

LIGO-G070228-00-R

APS Meeting, April 15, 2007, Jacksonville, FL

19

Advanced LIGO suspensions

- Quad controls prototype installed at LASTI and undergoing testing
- Noise prototype in fabrication
 - » Lowest mode predicted @ 100 Hz
- Fiber pulling/welding and OSEM sensors undergoing characterization

Quad Noise Prototype

Ribbons welded to silica ears bonded to mass

Noise Prototype OSEM (Prototype Unit)

LIGO-G070228-00-R

Thermal compensation

RF sidebands--

LIGO

no heating

60 mW

90 mW Carrier

RF sidebands---

150 mW

180 mW

120 mW

APS meeting, April 15, 2007, Jacksonville, FL

(thru unlocked IFO)

GW signal readout in Advanced LIGO

- Current LIGO uses 'RF readout' scheme
 - » Modulated carrier (dark under quiescent conditions) beats against 'bright' RF sideband
 - Mode overlap between RF and carrier
 - Places stringent requirements on RF phase noise
 - Impossible to meet for Advanced LIGO
- Advanced LIGO will use DC readout: GW-modulated light directly read out by dark port photodiode
 - » Requires very clean carrier light \rightarrow output mode cleaner to filter carrier
 - » Offset arms by 10-20 pm
 - » Advantage: reduces noise couplings

Suspended Output Mode Cleaner

LIGO-G070228-00-R

LIGO

If there were more time...

- Length control system
- Alignment control system

- High power electro-optic modulators and optical isolators
 - » New nonlinear optical materials and thermally compensated designs
 - » Session K12, Experimental Gravity (Sunday, 1:15 pm)
- State-of-the-art fused silica test masses
 - » Low absorption
 - » Sub-angstrom polishing

• Control and data system

LIGO-G070228-00-R

Conclusions

- LIGO is running at design sensitivity
- We are 80% through the S5 Science Run
 - » One year of two site coincidence data
 - » Some preliminary results at this conference
- Advanced LIGO design is mature
 - » Anticipate upgrade to begin in 2011; operations in 2014

• Members of the LIGO Laboratory, members of the LIGO Science Collaboration, National Science Foundation, PPARC, MPG, DFG

More Information

<u>http://www.ligo.caltech.edu;</u> <u>www.ligo.org</u>

LIGO

The LIGO Scientific Collaboration

LIGO-G070228-00-R

The importance of mirror coatings

- Making a better optical coating is a major focus of the LSC
 - » Efforts in coating development, coating characterization
 - Mechanical loss (reduction of thermal noise)
 - Optical absorption (thermal effects)
- Mechanical loss
 - » Efforts focused on incorporation of dopants to relieve coating stress
 - » TiO_2 -doped Ta_2O_5 has shown promise

X-Ray Florescence Results

LIGO-G070228-00-R