

Coherent all-sky search for gravitational wave bursts with LIGO, GEO and VIRGO detectors

Igor Yakushin, LIGO Livingston Observatory for the LIGO Scientific Collaboration

LIGO-G070207-05-Z

APS meeting, April 14-17, 2007

Igor Yakushin for LSC

LIGO-G070207-05-Z

- Coherent vs coincidence methods
- Constraint likelihood algorithm
 - Maximum likelihood ratio
 - Network response
 - Constrained likelihood
 - Network sensitivity
- Coherent WaveBurst pipeline
- LIGO-VIRGO-GEO project 2b
- S5a and S5 full year
- Conclusion & plans

- Coincidence methods:
 - Find excess energy trigger in each detector;
 - Select time(-frequency) coincidence triggers;
 - Do (semi)coherent follow-up of the remaining triggers (L. Cadonati, K.Thorne talks):
 - Amplitude consistency cut;
 - Correlation consistency cut, etc.
- Coherent methods:
 - Use a statistic that combines from the beginning in a coherent way data streams from all the detectors;
 - Can be used with arbitrary number of aligned or misaligned detectors;
 - Waveform and coordinate reconstruction.

APS meeting, April 14-17, 2007

Igor Yakushin for LSC

Maximum Likelihood Ratio method for GW detection

Flanagan, Hughes, PRD57 4577 (1998)

Likelihood ratio: $L(x | H_i) = \ln \left(\frac{P(x | H_i)}{P(x | 0)} \right)$, $P(x | H_i)$ - probability to measure x given hypothesis H_i

Maximum Likelihood Ratio: $L_{MLR}(x) = \max_{H_i} (L(x | H_i))$

In case of stationary gaussian detector noise: $L(x \mid h_{+}, h_{x}) = \sum_{k=1}^{K} \sum_{i=1}^{N} \frac{1}{\sigma_{k}^{2}} \left(x_{k}[i] \xi_{k}[i] - \frac{1}{2} \xi_{k}^{2}[i] \right)$

 $k-detector\ index,\ i-sample\ index$

Detector response: $\xi_k[i] = F_{+,k}(\theta, \varphi)h_+[i] + F_{x,k}(\theta, \varphi)h_x[i]$

• For the given point in the sky (θ, ϕ) maximize L to determine h_{+} and h_{x} .

• Maximize L (or other statistic) over (θ, ϕ) to determine the most probably source coordinates.

• Use L as detection statistic.

• There is a problem with this approach: for some source coordinates (depending on the network) the solution might be ill-defined.

• DPF solution for GW waveforms satisfies the equation

g – network sensitivity factornetwork response matrixε – network alignment factor(Klimenko et al PRD 72, 122002, 2005)APS meeting, April 14-17, 2007Igor Yakushin for LSCLIGO-G070207-05-Z

Any network can be described as two virtual detectors

detector	output	noise var.	likelihood	SNR
plus	X_+	8	$L_{+}=X_{+}^{2}/g$	$g\int h_{+}^{2}dt$
cross	X _x	Eg	$L_{\rm x} = X_{\rm x}^2 / \mathcal{E}g$	$\varepsilon g \int h_{\star}^2 dt$

L1xH1xH2 network not sensitive to h_x for most of the sky

- Use constraint on the solutions for the h_x waveform.
 - remove un-physical solutions produced by noise
 - may sacrifice small fraction of GW signals but
 - enhance detection efficiency for the rest of sources

$$SNR_{tot} = g\left[\left\langle h_1^2 \right\rangle + \varepsilon \left\langle h_2^2 \right\rangle\right]$$

Assumption: all the detectors have the same sensitivity

need several detectors for better sky coverage

APS meeting, April 14-17, 2007

Igor Yakushin for LS

LIGO

Coherent WaveBurst

- End-to-end pipeline to search for unmodeled gravitational wave bursts (inspiral mergers, supernova, GRBs,...).
- Coherent statistic constrained likelihood is used both for detection and signal reconstruction.
- Time-frequency analysis is done using wavelets.
- Analysis of multiple TF resolutions: $\Delta f=8,16,32,64,128,256$ Hz, $\Delta f\Delta T=1/2$
- Reconstruction of source coordinates and waveforms (A.Mercer talk).

similar method is described in M. Rakhmanov's talk

LIGO-G070207-05-Z

APS meeting, April 14-17, 2007

Igor Yakushin for LSC

- Coherent WaveBurst was used for analysis of the following datasets:
 - S4 LIGO-GEO:
 - No candidate events found;
 - Comparison of coherent and incoherent methods;
 - Paper in preparation;
 - S5a LIGO:
 - Nov 17, 2005 April 3, 2006, livetime 54.4 days (for the incoherent analysis of the same data set see L. Cadonati's talk);
 - S5 full year LIGO:
 - Nov 17, 2005 Nov 17, 2006, livetime 166.6 days;
 - S5 LIGO-GEO:
 - Jun 1, 2006 Nov 17, 2006, livetime 83.3 days;
 - LIGO-VIRGO-GEO project 2b:
 - Project is carried out jointly with the VIRGO collaboration;
 - Sep 8, 2006 Sep 10, 2006;
 - S5 LIGO-GEO run;
 - WSR1 (Weekend Scientific Run) VIRGO run;
 - artificial time shifts between detectors.

jointly with VIRGO collaboration

- Data
 - Sep. 8, 2006 Sep. 10, 2006
 - includes LIGO-GEO S5 data and VIRGO WSR1 data
 - sensitivity of VIRGO detector is comparable with H2 above 500Hz
- Goal
 - establish data exchange between LSC and VIRGO
 - exercise data analysis algorithms
 - do joint analysis with VIRGO collaboration
- Studies with coherent WaveBurst
 - H1H2, L1H1, L1H1H2, L1H1H2V1, L1H1H2G1, L1H1H2V1G1
 - frequency band 256-2048 Hz (limited by VIRGO & GEO)
 - false alarm rates are estimated from time-shifted data (100 time lags)
 - detection efficiency is estimated by using sine-Gaussian injections
 - Status
 - In progress
 - Preliminary lessons
 - Adding less sensitive detector does not degrade network sensitivity
 - Source coordinate reconstruction gets better as more detectors are added to the network

APS meeting, April 14-17, 2007

Igor Yakushin for LSC

LIGO-G070207-05-Z

Nov 17, 2005-Apr 3, 2006

- 64-2048 Hz;
- 100 time shifts to estimate false alarm rate;
- L1H1H2;
- Short and long sine-gaussian, gaussian, band-limited white noise waveforms to estimate sensitivity;
- The results can be compared with incoherent WaveBurst + CorrPower analysis (L. Cadonati talk) and other coincidence methods (K. Thorne talk).

S5

• Coherent WaveBurst pipeline is more sensitive than incoherent WaveBurst + CorrPower pipeline at about the same false alarm rate.

• The difference in sensitivity is especially noticeable for 70 Hz sinegaussian: incoherent pipeline used H1H2 amplitude consistency cut but amplitudes were not reconstructed well at this frequency.

hrss@50% in units 10⁻²² for sgQ9 injections

rate	Search	70	100	153	235	361	553	849	1053
S5a: 1/2.5y	WB+CP	40.3	11.6	6.2	6.6	10.6	12.0	18.7	24.4
S5a: 1/3y	cWB	28.5	10.3	6.0	5.6	9.6	10.7	16.9	21.9

expected sensitivity for full year of S5 data for high threshold coherent search

S5: 1/46	y	¢W	В	25.3	9.5	6.1	5.1	8.7	9.9	15.2	20.0
----------	---	----	---	------	-----	-----	-----	-----	-----	------	------

APS meeting, April 14-17, 2007

Igor Yakushin for LSC

- Coherent algorithms are now available to handle arbitrary networks of gravitational wave detectors.
- On S5a data coherent WaveBurst is more sensitive than incoherent WaveBurst + CorrPower search.
- Waiting for final data quality segments and calibration to redo the analysis of the full year of S5.
- We plan to use all the detector combinations for LIGO-only S5 analysis: L1H1H2, H1H2, H1L1, H2L1.
- When available, GEO data will also be (re)analyzed.
- In a month VIRGO plans to join S5 and exchange data with LIGO and we are ready to apply coherent WaveBurst pipeline to the joint burst search.