

Laser Working Group - close out-

Benno Willke

LSC meeting, Baton Rouge March 2007

LIGO-G070182-00-Z

diagnostic bread board

- 4 out of 8 Master lasers (2W NPROs) are delivered
- each has to pass a detailed acceptance test
- characterization program
 - power, slope, power in p-pol
 - RIN:
 - noise spectrum 1Hz 100kHz,
 - time series (60min) rms
 - frequency noise
 - spectrum 1Hz 100kHz
 - upper limit for drift
 - PZT and slow actuator calibration
 - beam quality
 - higher order mode content
 - beam pointing

ALIGO 35W front-end – ELIGO laser

- front end will be assembled on breadboard and delivered in single housing
- AOM and isolators included
- NPRO and amplifier controlled via Beckhoff touchpad
- Interface to EPICS

functional prototype

- 7 instead of 10 fibers
 - 7 x 45 W
- new homogenizer
 - higher pump brightness
- new laser head design
- whole resonator on base plate

PMC design

- thermal loading
 - PMC design based on thermal loading experiment by A. Bullington (Stanford)
 - assumption: less than 3ppm absorption
 - allow for a total of 10mW absorbed power
 - finesse 50 (3kW circulating power)
- in sealed housing, vacuum required ?
- rf filtering
 - 4dB @9MHz
 - sufficient? , increase length?

6

power stabilization

beam diagnostic setup

Laser diode room in Mechanical Building

Diode room detail (LHO)

- Portable HEPA panel for pump diode box maintenance
- Ante room for gowning/laser safety
- Fibers and cables in overhead tray
- Video/phone/network connections
- Room temperature monitor
- Dust monitor
- Smoke detector –control room alarm

Laser Safety

IGO-T070010-02-D Ad	lvanced LIGO	03/12/2007
Advanced LIGO Pre-	-stabilised Laser	Safety Plan
Peter King (ed.)		
Distribut LIGO S	tion of this document:	
This is ar of t	n internal working note he LIGO Project.	
California Institute of Technolog LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu	y Massachusetts ins LISCI Projec 175 A Cambridg Phone (61 Fax (617 E-mail: info	etitute of Technology ct – NW17-161 Ibany St e, MA 02139 (7) 253-4824 () 253-7014 @ligo.mit.edu
LIGO Hanford Observatory P.O. Box 1970 Mail Stop S9-02 Richland WA 99352 Phone 509-372-0406	LIGO Livingst P.O. I Livingston Phone 22 Fax 225	ton Observatory Box 940 n, LA 70754 25-686-3100 -686-7189

LIGO-G070130-00 ...

PEOPLE MATTER

Forschung Entwicklung Beratung

LASER ZENTRUM HANNOVER e.V.

New development on high power solid-state (& fiber) lasers @LZH

Maik Frede for the SSP-Group

LSC March 2007

LIGO-G070130-00-W

Combination of 885nm Pumping & Multi-Segmented Rods

- \rightarrow Temperature Reduction by ~ 30 %
- \rightarrow 276 W Output Power, 75 % Slope Efficiency

Tunable Fiber Laser MOPA

Results: Output-Power (tuneable)

Main-amplifier output power characteristic

Main-amplifier emission spectra

> 129 W from 1040-1085 nm

Single-Frequency Master-Oscillator Fiber Amplifier

Beam Quality (measured)

Fabry-Perot ring-cavity scan at 28 W

98% fundamental gaussian at 28 W Indiv. higher-order mode < 0.25%

Fabry-Perot ring-cavity scan at 148 W

92.6% fundamental gaussian at 148 W Indiv. higher-order modes < 1.8%

High Power, Single Frequency Ytterbium Fiber Amplifier

Increasing Reliability – Tapers

Increasing Reliability -- Silicate Bonding

- No high temperature processes
- Bond is as strong as substrate in silica/silica bonds
- Low optical absorption

Bond reflection below -50 dB.

Nufern 10W PM Amp Layout

Reprinted from: www.nufern.com/images/sub_assemblies_class/assembly_class_pdf7.pdf

Crystal rod: 2 mm dia by 80 mm length Water cooled (68 psi/1GPM water flow)

