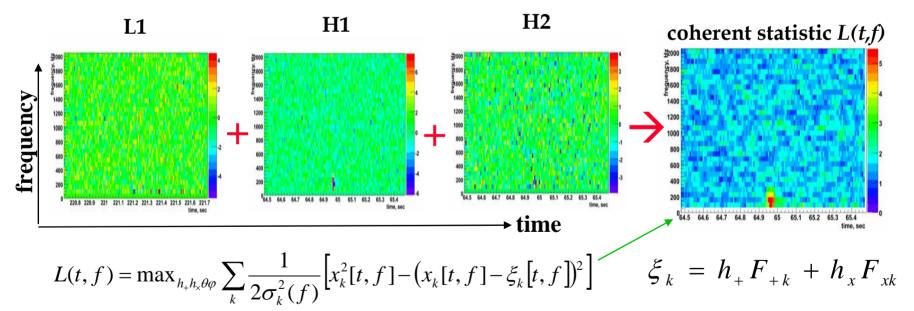




# Analysis of S5 data with coherent WaveBurst pipeline

S.Klimenko, I.Yakushin, A.Mercer, C.Pankow, P.Kalmus for the LSC-Virgo burst group

- coherent WaveBurst pipeline
- Preliminary results from un-triggered all-sky search
- Study of network configurations with project 2b data
- Application to GRB searches
- Coherent Event Display
- Summary




#### **Coherent WaveBurst**



#### End-to-end multi-detector coherent pipeline based on constrained L method

- target detection of burst sources (inspiral mergers, supernova, GRBs,...)
- for confident detection combines data from several detectors
  - > handle arbitrary number of co-aligned and misaligned detectors
  - $\succ$  reconstruction of source coordinates and GW waveforms & detector responses  $\xi_k$
  - > use coherent statistics for elimination of instrumental/environmental artifacts



#### accounts for

- > variability of the detector responses as function of source coordinates
- > differences in the strain sensitivity of the GW detectors



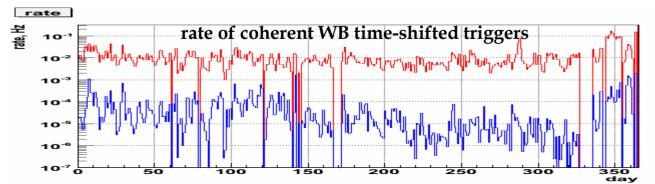
## status of the cWB pipeline



- Development is "complete" (there is always room for improvement...)
- Review is complete (M.Zanolin, K.Riles, B.O'Reilly)
  - > report draft: LIGO note LIGO-T040155-00-Z
- Documentation
  - http://tier2.phys.ufl.edu/~klimenko/waveburst/S5/coherent/s5allsky.html
    - method paper PRD 72, 122002 technical note project web page
- Performed preliminary studies for the following data sets
  - > LIGO network
    - > S5a, Nov 17/05 Apr 3/06, live time 54.4 days
    - > S5 (full year), Nov 17/05 Nov 17/06, live time 166.6 days (x10 of S4 run)
  - **►** LIGO-Geo network
    - > S4 data, NO events observed in zero lag
    - > S5 (full year), Jun 1/06 Nov 17/06, live time 83.3 days
  - > LIGO-Virgo run 2b data



## cWB Selection cuts




- Trigger production cut threshold on the likelihood of the TF pixels L(t,f)
- **Post-production cuts (control FA rate and sensitivity)**

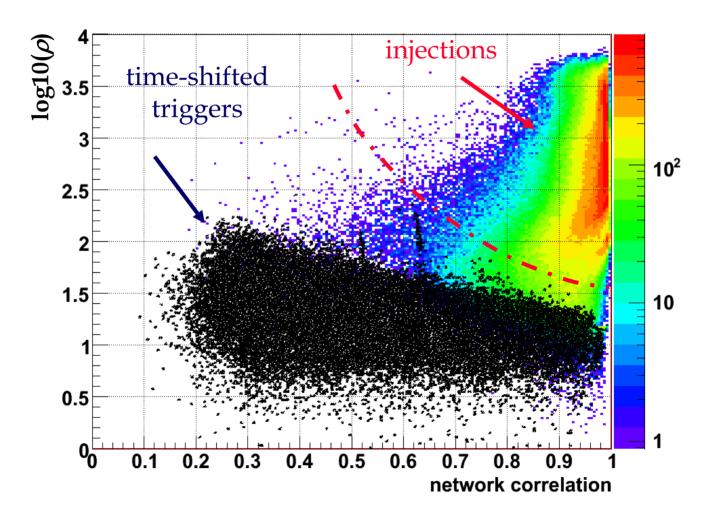
$$E_{tot} = 2L + N_{ull} = E_{incoherent} + E_{coherent} + N_{ull}$$

- **double OR coincidence**  $L-L_{L_1} > T \& L-L_{H_1} > T \& L-L_{H_2} > T...$
- > network correlation coefficient  $C_{net} = \frac{E_{coherent}}{N_{out} + E_{coherent}}$
- > average SNR per detector average SINK per detector  $\rho_k$  – estimated detector SNR  $\rho = \frac{1}{n} \sum_{k=1}^{n} \rho_k$  or  $\rho = (\prod \rho_k)^{1/n}$

$$\rho = \frac{1}{n} \sum_{k=1}^{n} \rho_k \text{ or } \rho = (\prod \rho_k)^{1/n}$$



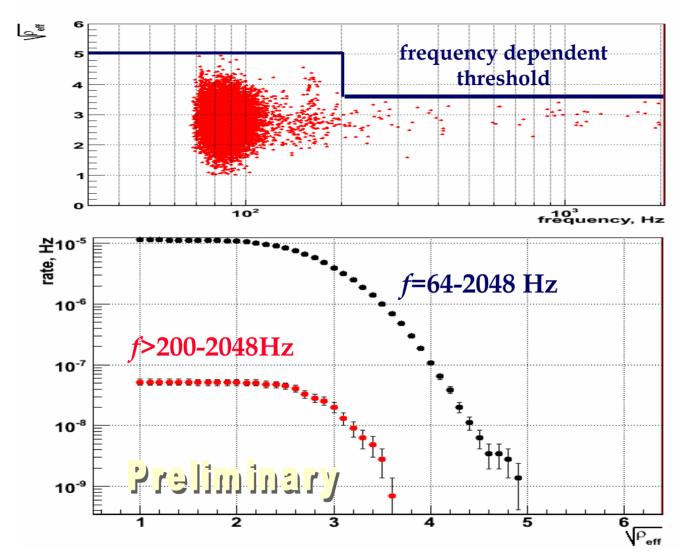
"single glitches"


"double glitches" T = 36



#### **Effective SNR**




$$ho_{\!\scriptscriptstyle e\!f\!f}=
ho^{\scriptscriptstyle C_{\scriptscriptstyle net}}$$



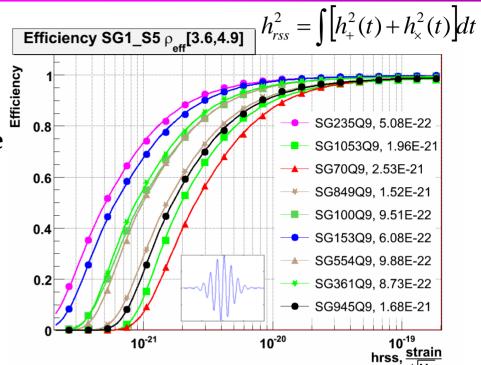


### **S5 Rates**





expected background rate of <1/46 year for a threshold of  $\sqrt{\rho_{eff}}$  =[3.6,5.0]




## **Detection efficiency for bursts**



- Use standard set of ad hoc waveforms (SG,GA,etc) to estimate pipeline sensitivity
- Coherent search has comparable or better sensitivity than the incoherent search
- Very low false alarm rate (~1/50years) is achievable





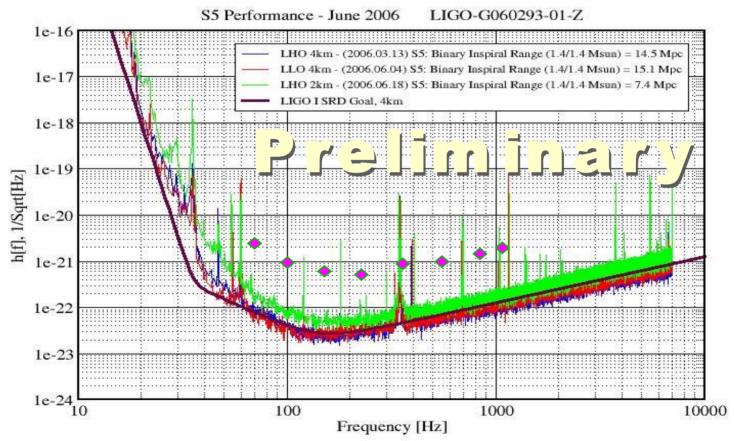
hrss@50% in units 10<sup>-22</sup> for sgQ9 injections

| rate        | search | 70   | 100  | 153 | 235 | 361  | 553  | 849  | 1053 |
|-------------|--------|------|------|-----|-----|------|------|------|------|
| S5a: 1/2.5y | WB+CP  | 40.3 | 11.6 | 6.2 | 6.6 | 10.6 | 12.0 | 18.7 | 24.4 |
| S5a: 1/3y   | cWB    | 28.5 | 10.3 | 6.0 | 5.6 | 9.6  | 10.7 | 16.9 | 21.9 |

expected sensitivity for full year of S5 data for high threshold coherent search

| S5: 1/46y | cWB | 25.3 | 9.5 | 6.1 | 5.1 | 8.7 | 9.9 | 15.2 | 20.0 |
|-----------|-----|------|-----|-----|-----|-----|-----|------|------|
|-----------|-----|------|-----|-----|-----|-----|-----|------|------|




# High threshold coherent search



set thresholds to yield no events for 100xS5 data (rate  $\sim 1/50$  years)

expected S5 all-sky sensitivity to sine-gaussian scalar waves

#### Strain Sensitivity for the LIGO 4km Interferometers





# Status of the S5 all-sky search



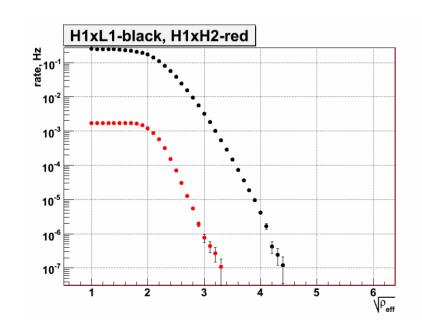
- preliminary results (no zero lag) reported on GWDAW11
- plan APS presentation (by Igor Yakushin)
- wait for final calibration, DQ flags and veto. After that need few weeks to finalize search
- meanwhile study H1xH2, L1xH1 network configurations



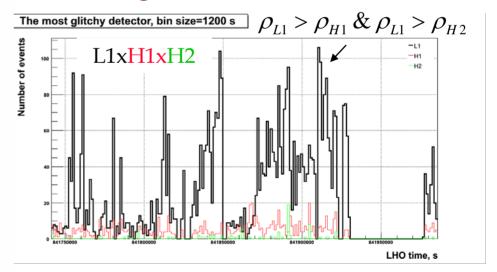
# Analysis of project 2b data



- project 2b data (includes LIGO-GEO and WSR1 Virgo data)
  - > Sep. 8, 2006 Sep. 10, 2006
  - establish data exchange between LSC and Virgo
  - > exercise data analysis algorithms
- studies with coherent WaveBurst
  - ➤ Igor run different network configurations: H1H2, L1H1, L1H1H2, L1H1H2V1, L1H1H2G1, L1H1H2V1G1
  - > frequency band 256-2048 Hz (limited by Virgo & GEO)
  - > false alarm rates are estimated from time-shifted data (100 time lags)
  - detection efficiency is estimated by using sine-Gaussian injections




## LIGO network




#### • performance at FA rate of 1μHz

| network  | hrss@50%<br>sg361q9  | hrss@50%<br>sg849q9  | hrss@50%<br>sg1615q9 | live time<br>sec |
|----------|----------------------|----------------------|----------------------|------------------|
| H1xH2    | 11x10 <sup>-22</sup> | 16x10 <sup>-22</sup> | 31x10 <sup>-22</sup> | 182772           |
| L1xH1    | 10x10 <sup>-22</sup> | 21x10 <sup>-22</sup> | 46x10 <sup>-22</sup> | 157599           |
| L1xH1xH2 | 8x10 <sup>-22</sup>  | 14x10 <sup>-22</sup> | 37x10 <sup>-22</sup> | 157599           |

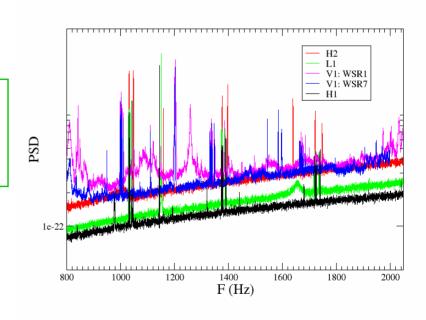


#### relative glitch rates of the detectors





# LIGO-Virgo-GEO network



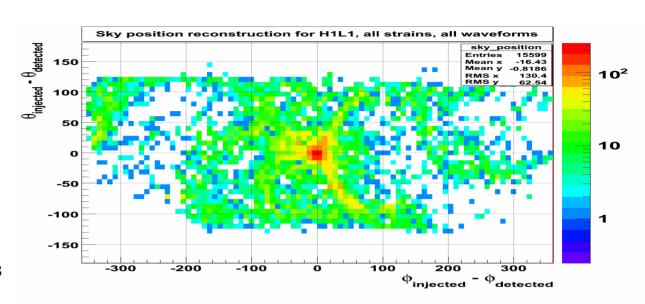

performance at FA rate of 1μHz

h<sub>rss</sub> errors ~15%

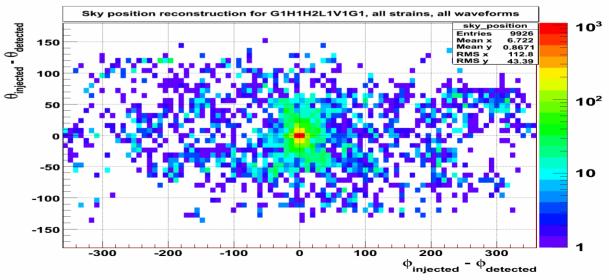
| network        | hrss@50%<br>sg361q9  | hrss@50%<br>sg849q9  | hrss@50%<br>sg1615q9 | live time<br>sec |
|----------------|----------------------|----------------------|----------------------|------------------|
| H1xH2          | 11x10 <sup>-22</sup> | 16x10 <sup>-22</sup> | 31x10 <sup>-22</sup> | 182772           |
| L1xH1xH2       | 8x10 <sup>-22</sup>  | 14x10 <sup>-22</sup> | 37x10 <sup>-22</sup> | 157599           |
| L1xH1xH2xV1    | 9x10 <sup>-22</sup>  | 17x10 <sup>-22</sup> | 40x10 <sup>-22</sup> | 104062           |
| L1xH1xH2xG1    | 9x10 <sup>-22</sup>  | 16x10 <sup>-22</sup> | 41x10 <sup>-22</sup> | 140351           |
| L1xH1xH2xV1xG1 | 9x10 <sup>-22</sup>  | 16x10 <sup>-22</sup> | 42x10 <sup>-22</sup> | 102907           |

both sensitivity and stationarity of the noise are critical for a detector to be useful in the network






#### Coordinate reconstruction




#### H1xL1

coordinate reconstruct is
possible for loud events
due to a time delay
between detectors and
different antenna patterns



# L1xH1xH2x V1xG1



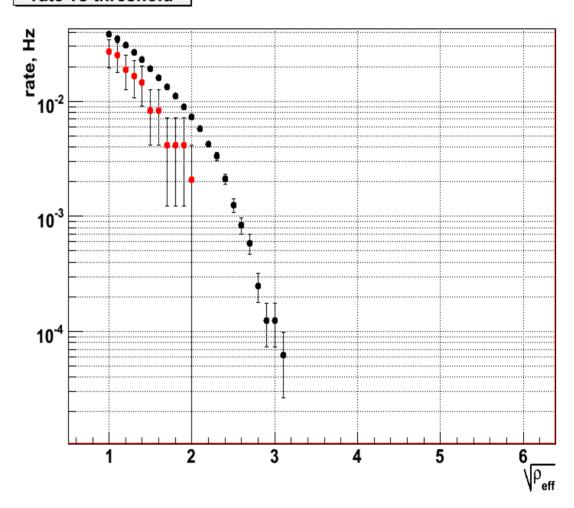


## Triggered searches with cWB



- cWB can be used to search for GW-GRB association by analyzing data around GRB triggers in a small patch on the sky at GRB location.
  - run analysis at lower threshold than for the un-triggered search.
- How cWB can complement current triggered searches?
  - > ability to handle arbitrary number of co-aligned and misaligned detectors
  - > conceptually different method no need to specify a priori a duration (integration time) and bandwidth of anticipated GW event
- Peter Kalmus run a demo analysis on GRB 051213 with 3 LIGO detectors using 480 sec of data around the GRB time.



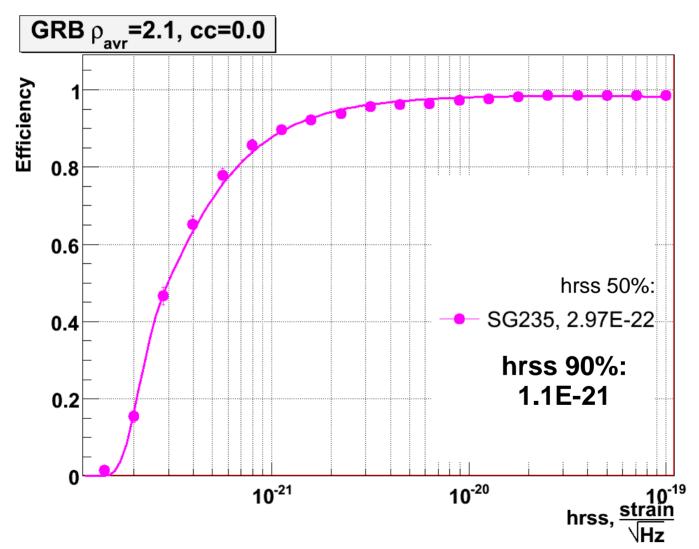

#### rates



FA rate is estimated from time-shifted data (100 lags)

The effective SNR  $\sqrt{\rho_{eff}}$  of the loudest event observed in zero lag is used as threshold to construct efficiency curves

#### rate vs threshold



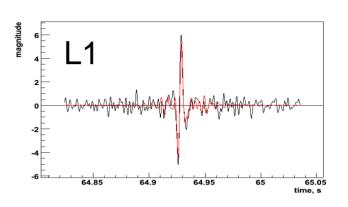


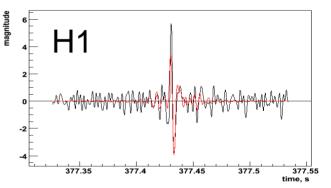

## upper limit on hrss

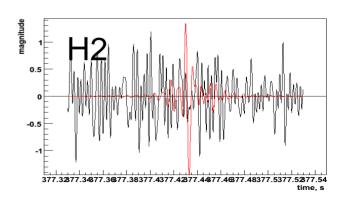


for sine-Gaussian wave at 235Hz and Q=9







#### **Coherent Event Display**




- Tool developed by Adam Mercer for
  - visualisation of the GW burst candidates
  - coherent follow up analysis of burst triggers
- Uses Coherent WaveBurst algorithm
- Generates a web page containing
  - > Full set of the coherent event parameters
  - > Time-Frequency Maps
  - Reconstructed Detector Responses
  - Likelihood, Correlation, Alignment and Sensitivity Skymaps
  - Likelihood Time-Frequency Maps

http://tier2.phys.ufl.edu/~ram/private/event\_display/









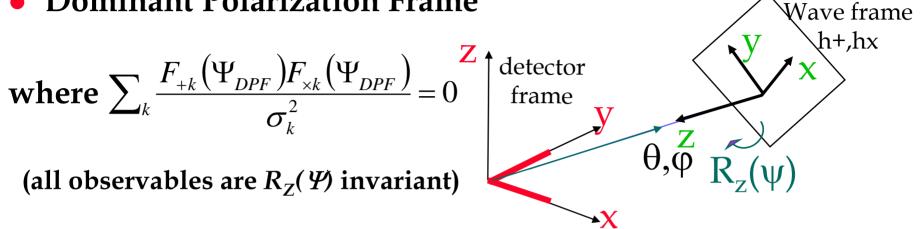
## **Summary & Plans**



#### • coherent WaveBurst pipeline

- performed analysis of S5a set (no zero lag analysis)
- > study of rates and sensitivity for one year of S5 data
- robust discrimination of glitches
- excellent computational performance trigger production for one year of S5 data (101 time lags) takes 1-2 day.

#### prospects for the S5 all-sky coherent search


- > trigger production & simulation with final S5 calibration in a time scale of few weeks after the v3 h(t) data is available
- > analyze outliers and apply DQ and veto cuts
- final estimation of the detection efficiency and rates
- ➤ analyze zero lag triggers → produce final result
- > expect 20-30% better sensitivitycompare to S5a in-coherent search



## Network response matrix



#### Dominant Polarization Frame

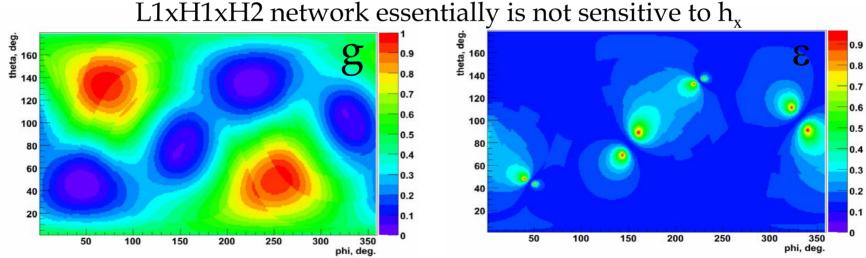


DPF solution for GW waveforms satisfies the equation

$$\begin{bmatrix} \sum_{k} \frac{x_{k}[i]}{\sigma_{k}^{2}} F_{+k} \\ \sum_{k} \frac{x_{k}[i]}{\sigma_{k}^{2}} F_{\times k} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \sum_{k} \frac{F_{+k}^{2}}{\sigma_{k}^{2}} & 0 \\ 0 & \sum_{k} \frac{F_{\times k}^{2}}{\sigma_{k}^{2}} \end{bmatrix} \begin{bmatrix} h_{+} \\ h_{\times} \end{bmatrix} \rightarrow \begin{bmatrix} X_{+} \\ X_{\times} \end{bmatrix} = g \begin{bmatrix} 1 & 0 \\ 0 & \varepsilon \end{bmatrix} \begin{bmatrix} h_{+} \\ h_{\times} \end{bmatrix}$$

- $\triangleright$  *g* network sensitivity factor
- $\triangleright$   $\varepsilon$  network alignment factor

network response matrix (PRD 72, 122002, 2005)




#### Virtual Detectors & Constraint



#### Any network can be described as two virtual detectors

| detector | output  | noise var. | likelihood                              | SNR                                                    |
|----------|---------|------------|-----------------------------------------|--------------------------------------------------------|
| plus     | $X_{+}$ | g          | $L_{+}=X_{+}^{2}/g$                     | $g \int h_{\scriptscriptstyle +}^2 dt$                 |
| cross    | $X_{x}$ | Eg         | $L_{\rm x} = X_{\rm x}^2/\varepsilon g$ | $arepsilon g \int h_{\!\scriptscriptstyle 	imes}^2 dt$ |




- constrain the solutions for the  $h_x$  waveform.
  - > remove un-physical solutions produced by noise
  - > may sacrifice small fraction of GW signals but
  - > enhance detection efficiency for the rest of sources
  - > several different constraints are implemented in cWB



## variability of Virgo noise





• Significant variability of Virgo noise due to angular motion of mirrors induced by seismic noise.