Future LIGO Interferometers

Moriond 07 La Thuille, Italy

Rana Adhikari Caltech

Advanced LIGO

LIGO mission: detect gravitational waves and initiate GW astronomy

Next detector

- Should have assured detectability of known sources Should be at the limits of reasonable extrapolations of detector physics and technologies
- Must be a realizable, practical, reliable instrument
- Daily gravitational wave detections

The next several years

- Between now and AdvLIGO, there is some time to improve...
 - 1) ~Few years of hardware improvements +
 - 1 ¹/₂ year of observations.
 - 1) Factor of ~2.5 in noise, factor of ~10 in event rate.
 - 2) 3-6 interferometers running in coincidence !

Enhanced LIGO details in "Lessons from LIGO-I" talk on Thursday

Parameter	LIGO I	Adv LIGO
Equivalent strain noise, minimum	3x10 ⁻²³ /rtHz	2x10 ⁻²⁴ /rtHz
Neutron star binary inspiral range	15 Mpc	175 Mpc
Omega GW	3x10 ⁻⁶	1.5-5x10 ⁻⁹
Interferometer configuration	Power-recycled MI w/ FP arm cavities	LIGO I, plus signal recycling
Laser Power in Arm Cavities	15 kW	800 kW
Test masses	Fused silica, 10 kg	Fused Silica, 40 kg
Seismic wall frequency	40 Hz	10 Hz
Beam size	4 cm	6 cm
Test mass Q	Few million	200 million
Suspension fiber Q	Few thousand	~30 million

LIGO – G070055-00-R

Anatomy of the projected Adv LIGO detector performance

Why use Signal Recycling?

Ultra Stable Laser

• High power laser: 180 Watts

- Laser power stabilization (relative power fluctuations ~ 2 x 10⁻⁹)
- Laser frequency stabilization
 - » Wideband frequency actuation for further stabilization (~ 10^{-7} Hz/rHz)
- Pre-mode cleaner for spatial clean-up and high-frequency filtering

Work lead by AEI (Hanover) in collaboration with LZH (Laser Zentrum Hanover)

Core Interferometer Optics

• Substrates

- » Fused silica: Heraeus (for low absorption) or Corning
- » Specific grade and absorption depends on optics
- ITMs and BS most critical (need low absorption and good homogeneity)
- Polishing
 - » Low micro-roughness (< 1 angstrom-rms)</p>
 - » Low residual figure distortion (< 1 nm-rms over central 120mm diameter)
 - » Accurate matching of radii-of-curvature
 - » Surfaces for attachment of suspension fibers
- Dielectric coatings
 - » Low absorption (0.5 ppm or smaller)
 - » Low scatter (< 30 ppm)</p>
 - » Low mechanical loss (< 2e-4)
- In-house Metrology
 - » ROC, figure distortion, scattering, absorption

Core Optics

Compensation Polish

Seismic Isolation: Active Platform

Quad Suspensions

Quadruple pendulum:

- » ~10⁷ attenuation @10 Hz
- Controls applied to upper layers; noise filtered from test masses

 Seismic isolation and suspension together:

» 10⁻¹⁹ m/rtHz at 10 Hz

Magnets

Electrostatic

Fused silica fiber

 Welded to 'ears', hydroxy-catalysis bonded to optic

@ the Caltech 40m Lab

@ the Caltech 40m Lab

@ the Caltech 40m Lab

DC Readout Beamline

Controls and Noise Characterization Prototype

Projected Noise Sources Initial Seismic Noise 10⁹ **0**-21 LIGO 10⁻²² Strain [1/√Hz] **10⁻²³1** Quantum noise Seismic noise Suspension thermal noise Silica Brownian thermal noise Coating Brownian noise (1/f) Gravity Gradients **10⁻²⁴** Total noise 10² 10³ 10¹ Frequency [Hz] Suspension Thermal Noise 10² Quantum Optical Noise is Tunable!

Opto-mechanical Spring

Radiation pressure: F = 2 P / c Detuned Cavity -> dF/dx

- ¹/₂ MW in the arms ->
- 'Optical Bar' detector
- ~75 Hz unstable optomechanical resonance
- High Bandwidth servos

Optical Spring stiffness ~ 10⁷ N/m
BMW Z4 ~ 10⁴ N/m
Angular spring resonance ~ 2 Hz

30% Sensitivity Improvement

Advanced LIGO

• Initial instruments, data helping to establish the field of interferometric GW detection

- Advanced LIGO promises exciting astrophysics
- Substantial progress in R&D, design
- Enhanced LIGO starts now!!

WASHINGTON STATE

MICHIGAN

INIVERSITY

- Installation in 2011, Data ~2013-2014
- Steady stream of gravitational wave signals

Physics of the Universe

NORTHWESTERN

UNIVERSITY

PENNSTATE

THE UNIVERSITY O

VESTERN AUSTRALL

ипр

PPORC

Universität Hannover