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Observing the Universe

• Electromagnetic waves
• Particles: neutrinos, cosmic rays
• Gravitational waves

J. Van der Velde, this conference

Nicholas Suntzeff, this conference

Ott, Burrows, Lessart, Livne, 2006
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Outline

• Gravitational waves
• Gravitational wave detectors
• Searches for gravitational waves
• Network of gravitational wave detectors
• Advanced detectors
• Conclusions
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The theory of gravitational radiation
o

• Einstein’s general relativity

• Gravity is not a force, but curvature of space-time
• When matter moves or changes its configuration, a wave of space-time 

curvature arise
gμν = ημν + hμν

• Waves propagate at the speed of light 
• They distort space itself: stretching one direction and squeezing the 

perpendicular in the first half period and vice versa in the second half

Gμν= 8πΤμν
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Generating Gravitational Waves

• Existence of gravity waves only of formal interest if there 
were no ways to generate them!

• Changing quadrupole moment of mass (Q~Mx2)
• Estimate strain at distance r away:

» h ~ (c/r) Q’’ 1/(c5 /G)
» laboratory-generated gravitational radiation, e.g., a rotating dumbbell 

(1ton, 2m, 1kHz): power radiated ~ 10-16 J/sec or h at r~λ of 10-38 !!
» Only real hope for studying gravity waves is to look to processes of 

astrophysical and cosmological magnitude

• Astrophysical dumbbells=binary stars, expected strain:
|h|=32π2G/c4 f2Mr2/R   …plug in some numbers...
M=1.4 Mo , f~400Hz, r=20km,
R~15Mpc => h~10-21 (δL/L)

‘standard’ power, 1052 J/s
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The Evidence for Gravitational Waves

• Radio pulsar B1913+16, 
discovered in 1974 by 
Hulse and Taylor as part 
of a binary system

• Long-term radio 
observations have yielded 
neutron star masses and 
orbital parameters

• System shows very 
gradual orbital decay just 
as general relativity 
predicts!

Very strong indirect evidence
for gravitational radiation
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Sources of Gravitational Radiation
• “Inspiral” of a  compact binary system

• Two neutron stars, two black holes, or one of each
• Burst sources

» Short duration transients, inherently powerful, 
accompanying cosmic catastrophes

» Merging of two compact objects, strong gravity limit, 
poor knowledge of the waveforms

» Ringing oscillations of newly formed black holes
» Supernovae explosions

• Continuous waves
» LMXB’s, known and unknown pulsars in our galaxy

• Stochastic background
» Random type of radiation described by its spectrum
» Big bang, other early universe processes
» Many weak unresolved sources emitting 

gravitational waves independently
• The unexpected!

o



LIGO-G070033-00-Z
8

The gravitational wave endeavor

• Need very massive objects
• Moving at relativistic velocities
• Terrestrial sources are not

detectable
• Extremely weak amplitude
• Very difficult to detect
• Not obscured by intervening 

matter
• Probe regions currently 

inaccessible by electromagnetic 
radiation
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Poster by Peter Halverson
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Turning strain h into a measurement  

• Resonant mass detector:
» Translate induced excitations to 

electrical signal by a motion or 
strain transducer which is then 
amplified

• J. Weber’s aluminum bars

L

ΔL
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Bar Detector Network



LIGO-G070033-00-Z
11

Measurements with the bar detectors

• It’s a hard measurement!
• Narrow band detectors (few 

tens of Hz) around the bars’
resonant frequency 
(~900Hz)

• Most suited for broad-band 
transient signals

• Operated as a network of 
detectors, “IGEC”, in 1997-
2000 and are resuming 
network analysis in 2005 as 
“IGEC2”

• Very high duty cycle and 
very low false alarm 
network
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coverage

Burst amplitude H at detector [Hz-1]
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detectable
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Vedovado et al. ca. Dec 2006

No candidate event was found
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What can bandwidth do for you?
• An evening visit to the Boston Symphony equipped with an 800-1100Hz ear:

• Same visit but with an improved ear, sensitive to 600-1200Hz:

• And another one, but now sensitive in 100-8000Hz:

• These could be nature’s waveforms and sounds! how can we capture its full 
glory?
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Interferometer Concept
• Orthogonal arm lengths change in different ways as they interact with 

a gravitational wave
• Use laser to measure relative lengths ΔL/L by observing the changes 

in interference pattern at the anti-symmetric port, for example, for L ~ 
4 km  and for a hypothetical wave of h ~ 10–21

ΔL ~ 10-18 m !
• Power-recycled Michelson interferometer with Fabry-Perot arm 

cavities
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Ground interferometers’ noise budget

• Best strain sensitivity 
~3x10-23 1/Hz1/2

at 200 Hz
• Displacement Noise

» Seismic motion
» Thermal Noise
» Radiation Pressure

• Sensing Noise
» Photon Shot Noise
» Residual Gas

• Facilities limits much 
lower

• Several ground 
interferometers are 
currently operating at 
or near design 
sensitivity
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Interferometric Detectors

TAMA 300m
Japan

CLIO 100m
Japan

VIRGO 3km
Italy

GEO 600m
Germany

LIGO Louisiana 4km
USA

LIGO Washington 2km& 4km
USA
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TAMA and CLIO

TAMA displacement noise
Tatsumi et al. ca. December 2006

• TAMA: first interferometric
detector to come online in 
1999

• By 2004, nine data taking 
periods collected ~3000 hours 
of data

• Several searches performed 
for transient and continuous 
sources and upper limit 
placed

• Currently undergoing commissioning in order to improve its low frequency 
noise

• CLIO: first cryogenic  interferometer test drive in February 2006
• Noise hunting continues
• R&D facilities for next generation large cryogenic detector at Kamioka mine

Poster by Shinji MIyoki
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VIRGO

• A French-Italian collaboration that built a 3km interferometer in Cascina, Italy
• Commissioning is in the final stages and short data-taking started in Sep 2006
• Instrument features ‘super attenuators’ able to filter seismic noise above ~10Hz

VIRGO strain sensitivity
Vajente et al. ca. December 2006
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GEO

• German-UK collaboration built and operates a 600m 
interferometer in Hannover, Germany.

• Part of the LIGO Scientific Collaboration’s
(LSC) instruments

• Developed and implemented advanced
technology: signal recycling,
monolithic suspensions

• Participated in the LSC
science runs so far, currently
undergoing commissioning
interleaved with data
taking
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LIGO

• Laser Interferometer Gravitational-wave Observatory
• Hanford, Washington: 2 km and 4 km detectors
• Livingston, Louisiana: 4 km detector
• 10 ms light travel time
• Managed and operated by Caltech and MIT with NSF funding
• LIGO Scientific Collaboration – 500+ researchers from 45 

institutions worldwide in order to run and analyze the data from the 
LIGO and GEO instruments
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LIGO Science Runs and Sensitivities 

S1: 23 Aug –
9 Sep ‘02

S2: 14 Feb – 14 
Apr ‘03

S3: 31 Oct ‘03 – 9 
Jan ‘04

S4: 22 Feb – 23 
Mar ‘05

S5: 4 Nov ‘05 – in 
proress

Goal is to “collect 
at least a year’s 
data of 
coincident 
operation at the 
science goal 
sensitivity”

Expect S5 to end 
in Fall 2007

S5 is not 
completely 
‘hands-off’
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LSC Observational results

• Searches for all-sky and targeted gravitational wave transients
• Searches for coalescing compact binaries with modeled waveforms 

(inspirals)
• Searches for continuous waves from known pulsars and all-sky 

search for unknown spinning neutron stars
• Searches for a stochastic background of gravitational waves of 

cosmological or astrophysical origin

• No discoveries reported
• Analysis of the first two science runs (S1/S2) complete and results 

published or in press 
• Most of S3/S4 analysis are complete and paper publications in 

preparation
• S5 analyses are ongoing
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Search for Bursts

• Sources emitting short transients of gravitational radiation
» Supernovae core-collapse
» Binary black holes mergers
» Black hole normal modes
» Neutron star instabilities
» Cosmic string cusps and kinks
» The unexpected!

• What we know about them …
» Catastrophic astrophysical events observed in the particle and/or electromagnetic 

sector will plausibly be accompanied by short signals in the gravitational wave 
sector           plausible suspects

» Exact waveforms are not or poorly modeled
» Durations from few millisecond to x100 millisecond durations with enough power in 

the instruments sensitive band (100-few KHz)
» Searches tailored to the plausible suspects “triggered searches”
» …or aimed to the all-sky, all-times blind search for the unknown using minimal 

assumption on the source and waveform morphology         “untriggered” searches
• Multi-detector analyses are of paramount importance
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Burst search: a time-frequency method

• Compute time-frequency decomposition in a Fourier or wavelet basis
• Threshold on power in a pixel; search for clusters of pixels
• basic assumption: multi-interferometer response consistent with a plane 

wave-front incident on network of detectors:
» use temporal coincidence of the 3 interferometer’s  ‘loudest pixels’
» correlate frequency features of candidates (time-frequency domain analysis)
» check consistency of the signal amplitude
» test the list of coincident event candidates for waveform consistency (correlation) 

between signals from three LIGO interferometers.
• end result of analysis pipeline: number of triple coincidence events
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Astrophysical waveforms

• Zwerger-Müller (Astron. Astroph. 
1997)
» 2D hydrodynamical model enforcing 

axisymmetry of the rotating star
» Waveforms sample initial angular 

momentum, rotational energy and 
adiabatic index

• Dimmelmeier, Font and Müller
(Ap J Lett 2001)
» relativistic effects included

• Ott, Burrows, Livne, Walder, (Ap
J 2004)
» Updated progenitor models and nuclear 

EoS
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Astrophysical waveforms and LIGO

• Widely varying signal morphologies and relevant strengths
• Lasting from fraction of a 1ms to 10-100 ms
• Not all of them have enough power in instruments’ sensitive band
• They are distance calibrated

optimally oriented and 
polarized SN waveforms at 
100pc during LIGO S2 run

LIGO S2 RUN (2003)
PRD 2005

LIGO TODAY
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…and a new mechanism!

• Burrows, Livne, Dessart, Ott, Murphy (ApJ 2006) and 
Ott, Burrows, Dessart, Livne (PRL 2006)
» Axisymmetric simulations with non-rotating progenitor
» In-falling material eventually drives oscillations of the core
» Hundreds of ms after the bounce and lasting several hundred ms

Ott, Burrows, Lessart, Livne, PRL 2006
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Mass equivalence:
order of magnitude analysis

• Instantaneous energy flux:

• integrate over signal duration and over a sphere at 
radius r assuming a sine-gaussian signal of frequency f0  
and quality factor Q:

• Assume for a sine-Gaussian-like signal, 153 Hz, Q=8.9,
hrss at 50% efficiency is 6.5 x 10–22 Hz–1/2

» 2 x 10–8 M emitted at 10 kpc
» 0.05 M emitted at Virgo Cluster
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Results from burst searches
(preliminary)

• Complementary detection algorithms
tuned for 64–1600 Hz, duration << 1 sec

• Data quality cuts and vetoes help reduce 
rate of false alarms from artifacts

• Search done blind; “box opened” at end
• No GW event candidates found in S1/2/3/4. 

S5 search is in progress
• Sensitivity of search evaluated for simulated 

signals with ad-hoc waveforms
• Corresponding energy emission sensitivity

EGW ~ 10–1 Msunc2 at 20 Mpc (153 Hz case)

hrss (root-sum-squared strain 
amplitude)R
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All-sky searches

• Search LIGO data surrounding GRB trigger using 
cross-correlation method

• No GW signal found associated with 39 GRB 
GRB in S2, S3, S4 runs and limits on GW signal 
amplitude were set

• 53 GRB triggers for the first five months of LIGO 
S5 run

• Typical S5 sensitivity at 250 Hz: EGW ~ 0.3 Msun
at 20 Mpc

• Also, searched for GW emission associated with 
the Soft Gamma Repeater 1806-20 – no signal 
found
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The path to gravitational wave 
astronomy
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Individual detectors        global network

AURIGA, Nautilus, 
Explorer bars

ALLEGRO
Baton Rouge LA
1 Bar detector

• Several km-scale 
detectors and bars 
are now in operation 

• Network gives:
» Detection confidence
» Sky coverage
» Duty cycle
» Direction by 

triangulation and fully 
coherent analysis

» Waveform extraction

• LIGO-GEO (LSC) 
and VIRGO have 
completed 
negotiations to 
analyze data jointly
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Detections         astrophysics

)()()()( ,, iiiiii dthFdthFtnts −+−+= ××++

• The inverse problem:

• At least three detector sites are needed in order to extract source 
waveform information

• Fully coherent analyses: a powerful tool for burst searches
» Maximum likelihood (“null stream”)
» Regularized likelihoods
» Improved consistency tests
» Maximum entropy

• Recovery of the waveform is essential for the study of the astrophysics 
of the sources

Detector output Our goal Our goalAntenna factor Antenna factornoise
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Source localization

• Geometry of the network:
» Time delays between any two detectors 

define a ring on the sky
» For a 3-detector network these ring 

intersect in two locations
» Degeneracy can be resolved by 

examining amplitudes

• Automatic in fully coherent 
analyses: the sky position that 
minimizes χ2  

• Fully coherent and incoherent data 
analysis techniques for detection, 
glitch rejection, waveform extraction 
and source location being applied to 
the LIGO-GEO-VIRGO data

Chatterji et al, PRD 2006

cosθ= cΔt/D
Δθ~0.5 deg
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Present          advanced detectorsPresent          advanced detectors
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Challenges for advanced detectors

• Extending bandwidth of resonant mass detectors
• Reducing noise to the level of interferometers
• Seismic isolation
• Thermal noise suppression
• High power lasers
• Thermal lensing effects in optical components
• Mirror coatings
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Resonant mass detectors

Schenberg
(Brasil)

MiniGRAIL
(Leiden-Rome)

DUAL (Padova): two nested 
mechanical resonators 
whose relative vibrations is 
measured by non-resonant 
readout

2008-2012 prospective
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Australian International Gravitational 
Observatory (AIGO)

• High optical power laser research facility
• Plans for a 5km interferometer
• May be realized with community support in the next 8 years

Blair et al. 2006



LIGO-G070033-00-Z
37

LargeLarge--scale Cryogenic Gravitationalscale Cryogenic Gravitational--wave wave 
Telescope (LCGT)Telescope (LCGT)

• Located at Kamioka underground site
• 3km long arms
• 150W laser
• Low seismic noise
• Features cryogenic (20K) sapphire mirrors for low thermal noise

Kuroda et al. 2006
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VIRGO+

• 50 W laser, 
F=150 cavities

• Low loss suprasil
end mirrors

• Monolitic
suspensions
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 50W/2 + new losses model
 50W/2 + new losses model + F=150
 50W/2 + current mirrors
 Nominal Virgo
 50W/2 + new losses mod+FS suspensions+F=150
 Virgo+ with Newtonian Noise

NN

Shot noise decreased
Thermal noise decreased

• Modest updates within 
the 2008-2009 window
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Advanced LIGOAdvanced LIGO

Advanced
 LIGO

• Factor 10 better amplitude 
sensitivity
» (Reach)3 = rate

• Factor 4 lower frequency bound
• Infrastructure of 

initial LIGO but replace many 
detector components with new 
designs

• Increase laser power in arms.
• Better seismic isolation.

» Quadruple pendula for each mass
• Larger mirrors to suppress thermal noise.
• Silica wires to suppress suspension thermal noise.
• “New” noise source due to increased laser power: radiation pressure noise.
• Signal recycling mirror: Allows tuning sensitivity for a particular frequency range.
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LIGO     eLIGO AdvLIGO

• AdvLIGO was approved by the US-NSB in 2004.
• It is in the President’s budget for start in 2008!

Adv LIGO
Const. begins Begin S6

Enhanced LIGO
End S6

Begin Adv. 

LIGO installation
Build hardware
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• A global network of gravitational wave
detectors is recording data at an
unprecedented sensitivity ever and we are working together 
to get the most out of data

• New upper limits are being set for the major sources of 
gravitational wave sources: binary inspirals, periodic sources, 
burst sources and stochastic background. 

• Getting ready to transition from upper limits to first detections 
and source astrophysics

• Next generation detectors and upgrades of existing ones that 
will bring guaranteed sources are planned or getting 
underway

• Stay tuned!

Conclusions

“Are we there yet?” cartoon from http://media.bestprices.com/

(we’ll surely stay tuned to you!)

http://media.bestprices.com/
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