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Orders of Magnitude

Quadrupole formula (Einstein 1916).
GW luminosity (ε: deviation from axisymmetry):
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Schwarzschild radius Rs = 2GM/c2

+ Need compact objects in relativistic motion:
Black Holes, Neutron Stars, White Dwarfs
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What is a neutron star?

Mass: M ∼ 1.4 M� Rotation: ν . 700 s−1

Radius: R ∼ 10 km Magnetic field: B ∼ 1012 − 1014 G

=⇒ density: ρ̄ & ρnucl

=⇒ relativistic: Rs
R = 2GM

c2R ∼ 0.4
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Gravitational Wave Strain h(t)

Plane gravitational wave h+
µν along z-direction:

Strain h(t) ≡ Lx−Ly
2L :

h(t)

t

Lx

Ly

y

x
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Triaxial Spinning Neutron Stars

Rotating neutron star:
- non-axisymmetric ε =

Ixx−Iyy
Izz

- rotation rate ν
+ GW with frequency f = 2 ν
Strain-amplitude h0 on earth:

h0 =
16π2 G

c4
ε Izz ν

2

d

= 4× 10−25
( ε

10−6

) (
Izz

1045 g cm2

) ( ν

100 Hz

)2
(

100 pc
d

)

Current LIGO sensitivity (S5):
√

Sn ∼ 4× 10−23 Hz−1/2

+ NS signals buried in the noise =⇒ need “matched filtering”
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Possible Emission Mechanisms

“Mountains”

Oscillations

Free precession

Accretion (driver)
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Neutron Star “Mountains”

Conventional NS crustal shear mountains:
+ εcrust . 10−7 − 10−6 (Ushomirsky, Cutler, Bildsten)

Superfluid vortices: Magnus-strain deforming crust
+ εMagnus ∼ 5× 10−7 (D.I. Jones; Ruderman)

Exotic EOS: strange-quark solid cores
+ εstrange . 10−5 − 10−4 (B. Owen)

Magnetic mountains:

large toroidal field Bt ∼ 1015 G ⊥ to rotation:
+ εtoroidal ∼ 10−6 (C. Cutler)
accretion along B-lines =⇒“bottled” mountains
+ εbottle . 10−6 − 10−5 (Melatos, Payne)
non-aligned poloidal magnetic field B ∼ 1013 G,
type-I or type-II superconducting interior,
εB . 10−6 (Bonazzola&Gourgoulhon)

R. Prix Gravitational Waves from Neutron Stars



Astrophysical Motivation
Detecting Gravitational Waves from NS

Gravitational Waves from Neutron Stars?
Emission Mechanisms
Gravitational Wave Astronomy of NS

Oscillation Modes

Chandrasekhar-Friedman-Schutz instability:

counter-rotating mode “dragged forward”
=⇒negative energy and angular momentum
+ emission of GW amplifies the mode
+ counteracted by dissipation

r-mode instability window:

Open questions:
Dissipation mechanisms: vortex friction,
hyperons, crust-core coupling,...
saturation amplitude, mode-mode
coupling, evolution timescales
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Free Precession

“Most general motion of a rigid body” (Landau&Lifshitz 1976)

NS are not rigid: coupled crust - core
(viscosity + superfluid vortex pinning)

likely to be damped rapidly
no obvious instability or “pumping
mechanism”

h0 ∼ 10−26
(
θw

0.1

) (
100 pc

d

) ( ν
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)2

R. Prix Gravitational Waves from Neutron Stars



Astrophysical Motivation
Detecting Gravitational Waves from NS

Gravitational Waves from Neutron Stars?
Emission Mechanisms
Gravitational Wave Astronomy of NS

Accretion

Breakup-limit νK ∼ 1.5 kHz + What limits the NS-spin?

Bildsten, Wagoner: Accretion-torque = GW torque (∝ ν5)

Observed X-ray flux + Sco X-1: h0 ∼ 3× 10−26 (270 Hz/ν)1/2
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Astrophysics Summary

NS are plausible sources for LIGO I, II or VIRGO
Whether or not they are detectable depends on many
poorly-understood aspects of NS physics
+ Any GW-detection from rotating NS will be extremely
valuable for NS physics
+ Even the absence of detection can yield astrophysically
interesting information (crust deformation, B, instabilities)
NS physics producing GWs is very different and
complementary to electromagnetic emission
(bulk-mass motion vs magnetosphere-electron motion)
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Gravitational Wave Astronomy

“Astero-Seismology” (Andersson, Kokkotas 1998): f-mode

+ Measurement of (ωf , τf ) =⇒ deduce (M,R) =⇒ EOS
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LSC detectors: LIGO + GEO600
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Current LIGO noise performance

h0 = ∆L
L ∼ 3× 10−23 =⇒ ∆L ∼ 10−19 m = 10−4 fm!!
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LSC Data Analysis

LIGO (H1, H2, L1) and GEO600 data analyzed within the
LIGO Scientific Collaboration (LSC):
∼ 40 institutions, ∼ 320 authors (S3)

4 major search groups (different targets and methods):
Binary inspirals: short inspiral signals (modeled)
Bursts: short unmodeled signals (supernovae, merger)
Stochastic background: cosmological background GWs
“Continuous waves”: spinning NS signals (long-lived)

R. Prix Gravitational Waves from Neutron Stars



Astrophysical Motivation
Detecting Gravitational Waves from NS

Status of LIGO (+GEO600)
Data-analysis of continous waves
Observational Results

Nature of GW from Rotating Neutron Stars

o NS frame: monochromatic wave, slowly varying frequency
Phase Φ(τ) = φ0 + 2π

(
f τ + 1

2 ḟ τ2 + ...
)

GW frequency for triaxial NS: f = 2 ν , r-modes: f = 4/3 ν, precession: f ≈ ν

2 polarization amplitudes: A+,A×

=⇒ Wave-components in NS frame:
h×(τ) = A+ cos Φ(τ)
h+(τ) = A× sin Φ(τ)

o Detector frame t : sky-position (α, δ) dependent modulations:
Phase: Doppler-effect due to earth’s motion τ = τ(t ;α, δ)
Amplitude: rotating Antenna-pattern F+,×(t , ψ;α, δ)
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Signal Received at the Detector

GW strain at the detector:
h(t) = F+(t) h+(t) + F×(t) h×(t)

Signal dependencies

h(t) = F+(t , ψ;α, δ) A+ cos
[
φ0 + φ(t ;α, δ, f , ḟ , ..)

]
+ F×(t , ψ;α, δ) A× sin

[
φ0 + φ(t ;α, δ, f , ḟ , ..)

]

Signal parameters:
4 “Amplitude parameters”: Aµ = Aµ (A+,A×, ψ, φ0)

“Doppler parameters”: λ = {α, δ, f , ḟ , ... (+ orbital parameters) }
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Optimal detection statistic: “Matched filtering”

Measured strain:

data︷︸︸︷
x(t) =

noise︷︸︸︷
n(t) +

signal︷ ︸︸ ︷
s(t ;A, λ)

scalar product: (x |y) ≡
∫

x̃(f ) ỹ∗(f )
Sn(f )

df

pdf for Gaussian noise n(t): P(n(t)|Sn) = k e−
1
2 (n|n)

=⇒ likelihood of x(t) in presence of signal s(t ;A, λ):

P(x(t)|A, λ; Sn) = k e−
1
2 (x |x) e(x |s)− 1

2 (s|s)

Bayesian posterior probability for signal {A, λ} in data x(t):

P(A, λ|x(t); Sn) = k ′ P(A, λ)︸ ︷︷ ︸
”prior”probability

e(x |s)− 1
2 (s|s)
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Matched filtering II: the F-statistic

detection statistic: Q(A, λ) ≡ (x |s)− 1
2 (s|s)

+ find maximum of Q in parameter space {A, λ}.

s(t ;A, λ) =
4∑

µ=1

Aµ hµ(t ;λ) (Jaranowski, Krolak, Schutz, PRD 1998)

=⇒ analytically maximize Q over Aµ: ∂Q
∂Aµ = 0 =⇒ Aµ

MLE

Definition of the “F-statistic”: F = Q(AMLE , λ)

2F(λ) = xµMµν xν

where xµ(λ) ≡ (x |hµ(λ)), and Mµν(λ) = (hµ(λ)|hν(λ))−1

+ find maximum of F in reduced parameter-space {λ}.
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Matched filtering III: multi-detector generalization

multi-detector vector {x(t)}X = xX(t) with X ∈ {H1,L1,V1...}

(x |y) =

∫
x̃X(f ) S−1

XY ỹY∗(f ) df

xµ(λ) = (x |hµ), Mµν(λ) = (hµ|hν)−1

=⇒ 2F(λ) = xµMµν xν (Cutler&Schutz, PRD 2005)

Signal-to-noise ratio @ perfect match

SNR =
√

(s|s) ∝ h0√
Sn

√
T N T ... observation time

N ... equal-noise detectors

h0/
√

Sn � 1 + need long T (and many detectors N )
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Matched filtering IV: parameter-space covering

The covering problem

Choose a finite number Np of “templates” λ(k), such that
1 never lose more than a fraction m at closest template λ(k)

2 Np is the smallest possible number satisfying 1

Relative loss in mismatched F(λ) at λ = λsig + ∆λ:

F(λ) = F(λsig)
(
1− gij ∆λ

i∆λj + ..
)

=⇒ ”metric” gij

Np ∝
∫
{λ}

√
det gij dnλ

+ isolated NS λi = (α, δ, f , ḟ ):

Np ∝ T 5 ... but NO scaling with N ! (R. Prix, gr-qc/0606088)

Computing “cost”: Cp ∝ N T 6
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Cost-benefit example: LIGO + VIRGO

Assume similar sensitivity H1 ∼ L1 ∼ V1

Np ∝ T 5 Cp ∝ N T 6 SNR ∝
√
N T

Det T SNR Cp

H1+L1 T0 ρ0 C0

H1+L1+V1 T0 1.22 ρ0 1.5 C0

H1+L1 3
2 T0 1.22 ρ0 11.4 C0

V1 2 T0 ρ0 32 C0

V1 3 T0 1.22 ρ0 364 C0

Combining (similar-sensitivity) detectors is the computationally
cheapest way to increase sensitivity!

(at fixed computing power =⇒ highest sensitivity)
R. Prix Gravitational Waves from Neutron Stars
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Search Strategies

o Wide-parameter searches for unknown NS:
Need to scan space of Doppler-parameters λ (but not A)
e.g. isolated NS (α, δ, f , ḟ ): number of templates Np ∝ T 5

1 Fully coherent: F-statistic (Einstein@Home T . 30 hours)
+ optimal sensitivity @ infinite computing power

2 Semi-coherent: Hough, StackSlide, PowerFlux (T ∼ data)
+ sub-optimal but fast

3 Hierarchical search: combine 1 + 2, will run on E@H
+ optimal sensitivity @ finite computing power

o Targeted searches for known pulsars (f = 2ν)
+ only one template λ0 = {α, δ, f , ḟ , ..} from radio/X-ray
Fully coherent, not computationally limited (T ∼ data),
=⇒ most sensitive search!
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Einstein@Home: Search for Unknown NS

Maximize available computing power

Cut parameter-space λ in small pieces ∆λ
• Send workunits ∆λ to participating hosts
• Hosts return finished work and request next

Public distributed computing project, launched Feb. 2005
Currently ∼120,000 active participants, ∼50Tflops
runs on GNU/Linux, Mac OSX, Windows,..
Search for isolated neutron stars f ∈ [50,1500] Hz

Aiming for detection, not upper limits
Analyzed data from S3, S4, just started: S5
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Einstein@Home S3 results

o correctly identified injections (h0 ∼ 10−23)

o all “outliers” either on r(t) · n = 0 circles (+ stationary lines),
or ruled out by follow-up studies (S4)
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Wide-Parameter Searches: (Best) Upper Limits

o Fully coherent (F-statistic) searches [gr-qc/0605028]:

S2 Sco X-1 (unknown f , ap, T̄ ), using T = 6 h of S2
+ h95%

0 ∼ 2× 10−22

S2 All-sky, isolated NS, (f ∈ [160, 728] Hz), using T = 10 h of S2
+ h95%

0 ∼ 7× 10−23

o Semi-coherent searches:

S2 Hough-transform: all-sky, isolated NS (f ∈ [200, 400] Hz)
+ h95%

0 ∼ 4.5× 10−23

S4 StackSlide: all-sky, isolated NS (f ∈ [50, 225] Hz)
+ h95%

0 ∼ 4.5× 10−24 (preliminary)

Early S5 PowerFlux: all-sky, isolated NS (f ∈ [40, 700]Hz)
+ h95%

0 ∼ 2× 10−24 (preliminary)
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Targeted Pulsar Search: Early S5 (preliminary)

Targeted 73 pulsars (f = 2ν):
32 isolated, 41 binary (29 in GCs)
first 2 months of S5
all 3 detectors: H1, H2, L1
Best 95% upper limits:
h0 . 2× 10−25 (PSR J1603-7202)
ε . 4× 10−7 (PSR J2124-3358)

Upper-limits well above spindown-limit (except in GCs)
But: Crab-pulsar is only a factor 2.1 away from spindown-limit
+ will (most likely) be able to beat spindown-limit during S5!
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Published results

Published LSC results of neutron-star searches:
S1 Setting upper limits on the strength of periodic gravitational waves from PSR

J1939 + 2134 using the first science data from the GEO 600 and LIGO detectors,
B. Abbott et al. (LSC), Phys. Rev. D 69, 082004 (2004)

S2 Limits on gravitational wave emission from selected pulsars using LIGO data,
B. Abbott et al. (LSC), Phys. Rev. Lett. 94, 181103 (2005)

S2 First all-sky upper limits from LIGO on the strength of periodic gravitational
waves using the Hough transform,
B. Abbott et al. (LSC), Phys. Rev. D 72, 102004 (2005)

S2 Coherent searches for periodic gravitational waves from unknown isolated
sources and Scorpius X-1: results from the second LIGO science run,
to be submitted, [gr-qc/0605028]

S3 Online report on Einstein@Home results for S3 search:
http://einstein.phys.uwm.edu/PartialS3Results/

R. Prix Gravitational Waves from Neutron Stars

http://einstein.phys.uwm.edu/PartialS3Results/


Astrophysical Motivation
Detecting Gravitational Waves from NS

Status of LIGO (+GEO600)
Data-analysis of continous waves
Observational Results

Summary and outlook

No GW detection so far, but none expected
+ setting upper limits on h0 and ε
S5 upper-limits are approaching astrophysically relevant
regimes (+ Crab, EOS-limits on ε)
LIGO S5 operating at design-sensitivity, will collect one
year’s worth of data (duration ∼1.5 years)
Einstein@Home: Started analyzing S5.
Developing a fully hierarchical search + most sensitive
possible search for unknown NS
NS detection with LIGO-I not very likely, but not impossible
(“Expect the unexpected!”)
The future is bright: S6, VIRGO, LIGO-II, GEO-HF, ...
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You can help us find Gravitational Waves!

Join Einstein@Home at:
http://einstein.phys.uwm.edu
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The “spindown-limit” (for known pulsars)

Energy lost in GW: dEGW
dt ∝ ν6 I2

zz ε
2

Rotational energy: dErot
dt ∝ Izz ν ν̇︸︷︷︸

observed

Spindown limit

dEGW

dt
≤ dErot

dt =⇒ upper limit on ε and h0

+ limit on deformation ε and amplitude h0:

ε2sd ∝
1
Izz

ν̇

ν5 , hsd ∝
√

Izz

d

√
ν̇

ν
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