

Glitch and veto studies in LIGO's S5 search for gravitational wave bursts

Erik Katsavounidis MIT

for the LIGO Scientific Collaboration

11th GWDAW, Potsdam, Germany December 19, 2006

LIGO-G060638-00-Z

Glitch study requirements

- Low latency (seconds to hour), control-room feedback
 - » Support real-time operations for immediate action on the instruments
 - » Guide operators and shift workers
- One day to one week feedback
 - » Support "online" astrophysical analyses
 - » Provide trends of the instruments' behavior over longer strides
- Month(s) feedback

- » Driven by data analyses groups, primarily, bursts and inspiral
- » Ultimate clean up of data for deep into the noise searches
- » Provide feedback for long-term planning and understanding of the instruments
- Documentation, archiving and easy to use
 - » Still space for improvement!

Tools for glitch study

- Data Monitoring Tool (John Zweizig, Caltech)
 - » True, real-time applications
 - » General data-mining and watching processes at multiple levels
 - Gravitational wave, auxiliary, data-acquisition specific
 - » Science monitors, burstmon (Sergey Klimenko et al, Florida)
- Electronic detector logbooks !
- BlockNormal (Shantanu Desai et al., PSU)
 - » Daily glitch studies
- KleineWelle (Lindy Blackburn et al., MIT)
 - » Quasi-real time and offline processing
- Q-pipeline (Shourov Chatterji, Caltech and INFN)
 - » The LIGO instruments' time-frequency microscope
- Burst and Inspiral event generators
 - » Event-driven in-depth analysis both online and offline

BurstMon

- Variant of WaveBurst
- SNR of loudest cluster
- Monitor glitch rate

Demo

Hide/Show the option panel | loudest cluster in H2(_2kHz)

SNR of loudest cluster in H1(2k

Graphics

Monitors.

AG 10³

lang I¶ang I¶ang I

AGI

T0=16/12/2006 03:28:16

LIGO

- » Noise non-stationarity and non-Gaussianity
- Monitor detector sensitivity

AGT

AG

Time (h)

Avg=1

Demo

Glitch studies with BlockNormal

- Time-domain search for noise that doesn't look like background noise
- Identify outlier events on single-instrument basis characterize them using the 'Event Display' and Q-scans

Glitch studies with KleineWelle

- Use the Discrete Dyadic Wavelet Transform
 - » Decompose time-series into a logarithmically-spaced time-frequency plane
 - » Identify pixels that are unlikely to have resulted from noise fluctuations
- Generate triggers with rate-based tuning of O(0.1)Hz
 - » Provide information on the start time, stop time, frequency, number of timefrequency pixels involved
 - » Threshold on probability of event resulting from Gaussian noise (significance)
- Analyze all gravitational-wave channels and a massive (300+) number of auxiliary channels in quasi-real time
 - » Identify features in the data
 - » Examine correlations with GW channel -- veto analysis
 - » Study time-variability
 - » Scan and classify single and multi-IFO outlier GW events

Glitch rates so far in S5

 Singles rates (in Hz), raw, (red), after category 2 data quality (green) and after cat-3 (blue) (DQ categories: see Laura's talk)

LIGO-G060638-00-Z

Trigger features

Low frequency glitches in H1/L1 during first part of S5

LIGO

Plenty and loud glitches toward the end-of-lock

Hourly glitches in LLO

- Started Oct 3, 2006 and have been coming and going
- Attributed to BURT (=Back Up and Restore Tool) snapshots performed by the DAQ on an hourly basis- mechanism not fully understood, but problem currently is not present

LIGO-G060638-00-Z

More on hourly glitches in LLO

Bursts of high significance, low frequency glitches

Effects of high microseism

Increase of low frequency glitches

High microseism at LLO (Oct 15, 2006)

GW-AUX correlations and vetoes

Features studied in a first pass:

- » Overlap as a function of trigger frequency and trigger amplitude
- » Formal veto analysis, i.e., study of the veto efficiency vs dead time, time-lag analysis, use percentage
- » Cross-correlations
- GW ASI example in L1 over the first 103 days of S5

Veto choices

- A collective analysis of correlations between kleinewelle triggers from 300+ detector channels and the gravitational-wave channel
- Environmental channels in LLO vs low threshold GW triggers (three distinct auxiliary channel thresholds):

LIGO-G060638-00-Z

Channel-ranking principle

- Compare GW-auxiliary channel coincidences to expectation from background; cast the answer in terms of Poisson probability (see poster by Erik K and Peter Shawhan)
- Environmental channels in LLO vs low threshold GW triggers:
- Veto significance for three distinct auxiliary channel thresholds, low (red), medium (green) and high (blue):

LIGO

Good understanding of the accidentals (background) in GW-auxiliary channels coincidences:

Veto choices in H1 for first 5 months of S5

 Veto-yield on H1 singleinstrument gravitational wave transients of ~10⁻²¹ sqrt(Hz) and above is at the 1% level for environmental channels and at the 10% level for interferometric channels

LIGO

 Resulting dead-times at the level of 0.5%

> Preliminarywork in progress!

	Channel	GWT /	AxThr	_Dur_	Deadtime	Nveto	Nbkg	Prob
•	bsc1accy	104 best:	104	0.100	0.000 %	9	0.006	.9e-13
•	bsc2accx	104 best:	104	0.100	0.000 %	8	0.00 4	.8e-11
•	bsc2accy	104 best:	101	0.100	0.003 %	8	0.05 1	.8e-09
•	bsc3accx	104 best:	104	0.050	0.000 %	7	0.00 2	.9e-09
•	bsc4accx	104 best:	104	0.100	0.000 %	9	0.006	.9e-13
•	bsc4accy	104 best:	104	0.100	0.000 %	9	0.006	.9e-13
•	bsc7accx	104 best:	104	0.100	0.000 %	8	0.00 4	.8e-11
•	bsc8accy	104 best:	104	0.100	0.000 %	8	0.00 4	.8e-11
•	ham1accz	104 best	t: 104	4 0.100	0.001 %	8	0.05 1	1.8e-09
•	ham3accx	104 best	t: 104	0.100	0.000 %	8	0.00 4	4.8e-11
•	ham7accx	104 best	t: 101	0.150	0.003 %	9	0.152	2.9e-09
•	ham7accz	104 best	t: 101	0.150	0.004 %	10	0.15	1.1e-10
•	ham9accx	104 best	t: 104	1 0.150	0.008 %	10	0.30	5.3e-09
•	iot1mic	104 best:	101 ().100	0.001 %	9 0	.15 2.9	e-09
•	isct1accx	104 best:	104	0.150	0.000 %	8	0.05 1.8	8e-09
•	isct1accy	104 best:	104	0.150	0.001 %	8	0.05 1.8	8e-09
•	isct1accz	104 best:	104	0.150	0.001 %	8	0.05 1.8	8e-09
•	isct1mic	104 best:	101 (0.100	0.001 %	9 ().15 2.9)e-09
•	isct4accy	104 best:	104	0.200	0.001 %	10	0.00 8	8e-15
•	isct4accz	104 best:	104	0.200	0.001 %	11	0.00	1e-16
•	isct7accy	104 best:	101	0.100	0.001 %	8	0.00 4.	8e-11
•	isct7accz	104 best:	101	0.200	0.005 %	10	0.40 3	2e-08
•	lveaseisx	104 best:	104	0.100	0.000 %	8	0.00 4.8	8e-11
•	lveaseisy	104 best:	101	0.050	0.001 %	9	0.00 6.9	9e-13
•	lveaseisz	104 best:	104	0.100	0.000 %	8	0.00 4.8	3e-11
•	psl1accx	104 best:	101	0.100	0.007 %	17	0.10 2	.4e-23
•	psl1accz	104 best:	101	0.100	0.016 %	13	1.60 1	.7e-06

H1-H2 coincidences

H1-H2 coincidences

 Outlier H1-H2 vs closer to the noise floor H1-H2 events may be generated by different mechanisms

LIGO

Cross correlograms in two days with extreme rates (high, top, and low, below)

Signal autocorrelations

Summary and outlook

- Significant progress -with respect to previous LIGO science runs- in following up features in the detectors
- Multiple methods are identifying interesting events to be followed up
- Numerous auxiliary detector channels analyzed in quasireal detector in assisting detector monitoring and detector characterization
- Rigorous tools for establishing veto criteria are maturing
- Bring to real-time as much as possible of the glitch work so that to be able to support a real-time astrophysical search in the future