Hough search for continuous gravitational waves using LIGO S4 data

A.M. Sintes for the LIGO Scientific Collaboration Universitat de les Illes Balears, Spain Albert Einstein Institut, Germany

MG11, GW4- GW data Analysis Berlin - July 23-29, 2006

LIGO-G060614-00-Z

Content

Introduction

- > The Hough transform
 - Overview of S2 analysis
 - Improvements for S4
 - Preliminary S4 results
- Future work

Sources of Continuous Gravitational Waves

(This talk shows results for isolated sources only.)

Search can detected any periodic source.

Upper limits are set on gravitational-wave amplitude, \Rightarrow h₀, of rotating triaxial ellipsoid.

Credits:

A. image by Jolien Creighton; LIGO Lab Document G030163-03-Z.

B. image by M. Kramer; Press Release PR0003, University of Manchester - Jodrell Bank Observatory, 2 August 2000.

C. image by Dana Berry/NASA; NASA News Release posted July 2, 2003 on Spaceflight Now.

D. image from a simulation by Chad Hanna and Benjamin Owen; B. J. Owen's research page, Penn State University.

Mountain on neutron star

Precessing neutron star

Accreting neutron star

Oscillating neutron star

Expected waveform from an isolated spinning NS is sinusoidal with small spin-down:

 $h(t) = F_{+}(t,\psi)h_{+}(t) + F_{\times}(t,\psi)h_{\times}(t)$ $h_{+} = A_{+}\cos\Phi(t)$ $h_{\times} = A_{\times}\sin\Phi(t)$

$$\Phi(t) = \phi_0 + 2\pi \sum_{n=0}^{\infty} \frac{f_{(n)}}{(n+1)!} (t - t_0)^{n+1}$$

- Doppler frequency modulation due to motion of Earth and amplitude modulation due to detector antenna pattern.
- For setting upper limits only, we assume the emission mechanism is due to deviations of the pulsar's shape from perfect axial symmetry, $f_{GW}=2f_r$

$$A_{+} = \frac{1}{2} h_0 (1 + \cos^2 t)$$
$$A_{\times} = h_0 \cos t$$
$$h_0 = \frac{16\pi^2 G}{c^4} \frac{I_{zz} \varepsilon f_r^2}{d}$$

Three methods have been developed to search for cumulative excess power from a hypothetical periodic gravitational wave signal by examining successive spectral estimates:

StackSlide PowerFlux

Hough

They are all based on breaking up the data into segments, FFT each, producing Short (30 min) Fourier Transforms (SFTs) from h(t), as a coherent step (although other coherent integrations can be used if one increasing the length of the segments),

and then track the frequency drifts due to Doppler modulations and df/dt as the incoherent step.

- > Other fully coherent methods:
 - Frequency domain match filtering/maximum likelihood estimation
 - Time domain Bayesian parameter estimation

What is exactly summed?

- StackSlide Normalized power (power divided by estimated noise)
 Averaging gives expectation of 1.0 in absence of signal
- Hough Weighted binary counts (0/1 = normalized power below/above SNR), with weighting based on antenna pattern and detector noise

 PowerFlux – Average strain power with weighting based on antenna pattern and detector noise
 Signal estimator is direct excess strain noise (circular polarization and 4 linear polarization projections)

500.1 500.08 500.06 500.04

500.02 (Hz)

499.98

499.96 -499.94 -499.92 -499.92 -

0.5

The *Hough transform* is a general method for pattern recognition that was developed and patented many years ago.

We use the *Hough transform* to find a pattern produced by the Doppler modulation & spin-down of a GW signal in the time-frequency plane of our data. For isolated NS the expected pattern depends on: $\{\alpha, \delta, f_0, f_n\}$

MG11 July'06, Berlin, AM Sintes for the LS

- Start with 1800s SFTs for each detector
- Select frequency bins by setting a threshold on normalized power
 gives time-frequency collection of 0s and 1s
- For N SFTs, the final number count for a given parameter space point is

$$n = \sum_{i=1}^{N} n_i$$
 where $n_i = \begin{cases} 0\\ 1 \end{cases}$

Using 0s and 1s leads to gain in computational efficiency and it is more robust against large transient power artifacts

Hough S2: UL Summary Feb.14-Apr.14,2003

- S2 analysis covered 200-400Hz, over the whole sky, and 11 values of the first spindown ($\Delta f = 5.55 \times 10^{-4}$ Hz, $\Delta f_1 = -1.1 \times 10^{-10}$ Hz s⁻¹)
- Templates: Number of sky point templates scales like (frequency)²
 - 1.5×10⁵ sky locations @ 300 Hz
 - − 1.9×10⁹ @ 200-201 Hz
 - 7.5×10⁹ @ 399-400 Hz
- Three IFOs analyzed separately
- No signal detected
- Upper limits obtained for each 1 Hz band by signal injections: Population-based frequentist limits on h₀ averaging over sky location and pulsar orientation

Detector	L1	H1	H2
Frequency (Hz)	200-201	259-260	258-259
$h_0^{95\%}$	4.43x10 ⁻²³	4.88x10 ⁻²³	8.32x10 ⁻²³

Perform the Hough transform for a set of points in parameter space $\lambda = {\alpha, \delta, f_0, f_i} \in S$, given the data:

 $HT: S \rightarrow N$

$$\lambda \rightarrow n(\lambda)$$

Determine the maximum number count n*

 $n^* = \max(n(\lambda)): \lambda \in \mathbf{S}$

- > Determine the probability distribution $p(n/h_0)$ for a range of h_0
- ➤ The 95% frequentist upper limit $h_0^{95\%}$ is the value such that for repeated trials with a signal $h_0 \ge h_0^{95\%}$, we would obtain $n \ge n^*$ more than 95% of the time

$$0.95 = \sum_{n=n^*}^{N} p(n/h_0^{95\%})$$

Compute $p(n/h_0)$ via Monte Carlo signal injections

Number count distribution for signal injections in S2 data

L1: 200-201 Hz, *n** =202, 1000 injections

 $p(n/h_0)$ ideally binomial for a target search, but:

- Non stationarity in the noise
- Amplitude modulation of the signal for different SFTs
- Different sensitivity for different sky locations and pulsar orientations
- Random mismatch between signal & templates

'smear' out the binomial distributions

- The S2 Hough search has been modified to take into account that the SFTs have different noise floors and the signal amplitude changes in time – SNR changes across SFTs
- We use a *weighted Hough* to give more weight to SFTs having greater SNR. Weights are proportional to the beam pattern functions and inversely proportional to the SFT noise floor.
- Weighting method applied to Hough was initially suggested by C.Palomba and S.Frasca at GWDAW-2004 and it is similar to the one used by the PowerFlux method.
- > Number count n is not an integer anymore

$$n = \sum_{i=1}^{N} w_i n_i \qquad \sum_{i=1}^{N} w_i = N$$

- Using the weights does not lead to any loss in computational efficiency or robustness
- ➢ It has also been generalized to the Multi-IFO case

Improvements for S4

- Nominal sensitivity for given FA and FD assuming a perfectly matched template averaged over sky, orientations and polarization angles:
- Improved Sensitivity: Assumes template is perfectly matched to signal, and average over all pulsar orientations and polarization angles (but not over sky-positions)
- > Optimal choice of weights is:
- Optimally weights should be calculated at same sky-location as signal

$$h_{0} = 5.34 \frac{S^{1/2}}{N^{1/4}} \sqrt{\frac{S_{n}}{T_{coh}}}$$
$$S = \operatorname{erfc}^{-1}(2\alpha_{H}) + \operatorname{erfc}^{-1}(2\beta_{H})$$

$$h_{0} = 3.38S^{1/2} \left(\frac{\|\vec{w}\|}{\vec{w} \cdot \vec{X}}\right)^{1/2} \sqrt{\frac{\langle S_{n}^{(i)} \rangle}{T_{coh}}}$$
$$X_{i} = \langle S_{n}^{(i)} \rangle \frac{(F_{+}^{(i)})^{2} + (F_{\times}^{(i)})^{2}}{S_{n}^{(i)}}$$
$$W_{i} \propto \frac{(F_{+}^{(i)})^{2} + (F_{\times}^{(i)})^{2}}{S_{n}^{(i)}}$$

- Gain in sensitivity is large if standard deviation of SFT noise floors is large or if signal amplitude changes rapidly across SFTs
- Mean number count is unchanged due to normalization of weights:

$$\langle n \rangle = N\alpha = N \exp(-\rho_{th})$$

Standard deviation always increases:

$$\sigma_n = \|\vec{w}\| \sqrt{\alpha(1-\alpha)}$$

> Number count threshold for a given false alarm:

$$n_{th} = N\alpha + \sqrt{2 \|\vec{w}\|^2 \alpha (1-\alpha)} \operatorname{erfc}^{-1}(2\alpha_H)$$

Signal injections in fake data, 250-260Hz, random sky-position and polarization angles. Number count threshold set for $\alpha_{\rm H}$ =10⁻¹⁰

- Improvement in sensitivity at 90% efficiency is roughly 10% in signal amplitude for a perfectly matched template and stationary noise. The gain depends on pulsar orientation
- Will be somewhat degraded when searching in a sky-patch because of a mismatch and also because we will use a single set of weights for the whole sky-patch (calculated at the center), but sensitivity can also improve in case of non-stationary noise.

- As before, input data is a set of N 1800s SFTs (no demodulations)
- Weights allow us to use SFTs from all three IFOs together: 1004 SFTS from H1, 1063 from H2 and 899 from L1
- Search frequency band 50-1000Hz
- I spin-down parameter. Spindown range [-2.2,0]×10⁻⁹ Hz/s with a resolution of 2.2×10⁻¹⁰ Hz/s
- ≻ All sky search
- > Sky is broken up into 92 patches 0.4 rad \times 0.4 rad wide
- Line cleaning used to remove known narrow spectral lines
- > All-sky upper limits set in 0.25 Hz bands
- Multi-IFO and single IFOs have been analyzed

Figure plots the relative noise weights from H1, H2 and L1

Histogram of Hough number counts for the H1 detector

Histogram of the Hough number count compared to a Gaussian distribution for the H1 detector (1004 SFTs) in the frequency band 150-151 Hz. Number of templates analyzed in each sky patch $\sim 11 \times 10^6$

<n>=202.7

 σ =12.94 (obtained from the weights)

<n>=202.7

σ=14.96

Loudest events for every 0.25 Hz Multi interferometer case 50-1000 Hz

Significance defined as $s = (n_{max} - \langle n \rangle)/\sigma$

Comparison of the All-sky 95% upper limits obtained by Monte-Carlo injections for the multi-IFO case.

The average improvement by using weights in this band is 9.25% for the multi-IFO case, but only ~6% for the single IFO

It turns out that UL can be fitted by

with C=11.0± 0.5

$$h_0^{95\%} = \frac{C}{\left(\sum_{i=1}^N \frac{1}{\left(S_n^{(i)}\right)^2}\right)^{1/4}} \sqrt{\frac{S^{1/2}}{T_{coh}}}$$

$$S = \frac{\max(significance)}{\sqrt{2}} + \operatorname{erfc}^{-1}(0.1)$$

MG11 July'06, Berlin, AM Sintes for the LS

or the LSC

Analysis of Hardware Injections

the LSC

- Results are interesting, but much better results are on the way!
- ➤ Improvements for S5:
 - S5: ~2x better sensitivity, 12x or more data
 - Increase the time of the coherent step
 - Hough on F-statistic segments from multiple IFOs
 - Ongoing development of Hierarchical pipeline that combines coherent and semi-coherent searches