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Abstract: One class of signals LIGO is searching for consists of short duration gravitational wave bursts of unknown waveforms. Potential sources include core collapse supernovae and the coalescence of binary black holes. To

detect such events, existing search algorithms project the LIGO data stream onto various time-frequency bases and then search for regions of excess signal energy. One of these search algorithms, the Q Pipeline, determines the

statistical significance of events based solely on the loudest element observed in the time-frequency plane. We investigated extensions to this approach that also considers the statistical significance of arbitrarily shaped clusters

in the time-frequency plane while rejecting noise. Density based clustering algorithms have proven to be the best for our purpose. We present detailed test results and show that density based clustering improves the performance
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(c) Neighboring data points having a sufficient number of neighbors are then included
in the cluster. (d) This process repeats as long as data points with sufficient number of
neighbors are found. (Figure from M. Ester et. al.)
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Figure-1: A hardware injection for the inspiral phase of an optimally oriented 1.4, 1.4 Figure-2: The Q pipeline keeps only the most significant non-overlapping tiles.
solar mass binary neutron star merger at 5 mega-parsecs as seen by the Q pipeline.

Introduction:
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Figure-4: Density based clustering clusters together most of the signal-energy
while removing most of the noise. The large red cluster is related to the
injection, the small green one is a low frequency detector “glitch”.

Density Based Clustering:
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Figure-3: Hierarchical clustering clusters together most of the injection tiles, but also
includes some noise tiles. A lot of individual noise clusters are produced as well. Here
each color and shape combinations represent a cluster, totaling ~68.

Motivations for Clustering:

Q-Pipeline:

1. Gravitational Wave signals lasting from a few millisecond
to a few seconds long events, and for which we do not have
sufficient understanding to predict the waveform, are classified
as GW bursts. That includes merger phase of binary
coalescence, core collapse supernovae, gamma ray bursts, and
other possible unexpected sources.

2. For known GW burst waveforms, matched filtering based on

1. Unmodeled burst search algorithm analogous to matched
filtering for waves having sinusoidal-Gaussian waveform.

2. Analyzes the time-frequency signal plane looking for non-
overlapping tiles (approximately: pixels) that have higher
energy than nearby tiles. Finds the most significant “event”
above a certain threshold in a given signal space (Fig-2).

3. Works very well for signals identified by a single tile that are

1. It was expected that clustering to collect energy would help to
more realistically estimate the significance of extended signals.
2. Clustering together multiple tiles from the same signal (or
glitch) would thus increase the detection efficiency of Q pipeline
for signals extended 1n time and/or frequency.

3. Hierarchical algorithms were tested using preexisting Matlab

1. Clusters together the most significant part of an injection
successfully, and almost all the noise 1s removed (Fig-4).

2. Picks a data point that has a given number of neighbors; for
all neighbors that also have enough neighbors, include them in
the cluster; and so on; until it reaches a point that doesn't have
enough neighbors (Fig-5).
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Figure-6: ROC curve, number of tiles vs. energy plot, false-rate vs. energy plot, and efficiency vs.

energy plot for 200 Inspiral injections at constant signal to noise ration (SNR) injected into LIGO
data collected during the ongoing fifth science run (S5).
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Figure-7: Same as Figure-6, for sinusoidal Gaussian injections at constant.

Further Details: http://www.ligo.caltech.edu/~rkhan/burst.html

3. Improvement of the false rate 1s expected for coherent and co-incident searches.



