

S5 calibration: time dependent coefficients α, γ

<u>Myungkee Sung</u>, Gabriela González, Mike Landry, Brian O'Reilly, Xavier Siemens,...

http://blue.ligo-wa.caltech.edu/engrun/Calib_Home/ http://ligo.phys.lsu.edu/sung/Factors/S5/V2/index.html

The formulas

Calibration for Fourier domain:

$$h(f) = R(f)GW(f)$$

If $GW = ASQ$, $R_{ASQ}(f) = \frac{1 + \gamma G_0(f)}{\alpha C_{ASQ,0}(f)}$
If $GW = DARM_ERR$, $R_{DERR}(f) = \frac{1 + \gamma G_0(f)}{\gamma C_{DERR,0}(f)}$

Calibration Coefficients are measures of loop gain (γ) and of sensing gain (α) relative to the "reference time"; they vary in time.

More formulas

 $\gamma = \frac{1}{G_0(f_{cal})} \frac{DCTRL - EXC}{EXC}$ $\alpha = \frac{D_0(f_{cal})}{G_0(f_{cal})} \frac{ASQ}{DCTRL}$

We use X. Siemen's code to get estimates for DARM_CTRL, DARM_CTRL_EXC and AS_Q at the frequency of the calibration line: by demodulation, we obtain complex time series, sampled at 60 sec sampling time (and 1 sec too).

We "only" need knowledge of open loop gain G(f) and digital filter D(f) at the calibration line frequency, at the reference time.

Complex coefficients

$\gamma =$	1	DCTRL – EXC
	$\overline{g_0}$	EXC
$\alpha =$	d_0	ASQ
	g_0	DCTRL

Ideally (no noise in ASQ, g_0) and d₀ perfectly known), coefficients are real, and identically equal to one at the reference time.

• If the amplitude of g_0 is off, we'll notice a deviation from unity γ calculated at the reference time.

• If the phase of g0 is off, we'll see a systematic imaginary part in γ at all times.

- If there is random noise in ASQ at the calibration line frequency, there will be a random imaginary component in γ .
- The true coefficients are real; we estimate them from the real part of the complex calculated coefficients.

•The imaginary parts are used to estimate systematic and random errors in our estimates. 4

LIGO

S5 calibrations: L1 reference time

S5 calibrations: H2 reference time

LIGO

S5 calibrations: H1 reference time

LIGO

H1 "features"

H1 OLG comparison:815844976

L1, H2 are within 1%: leave them alone.

L1 γ , α coefficients S5 up to Feb 1

L1 γ , α coefficients S5 up to Feb 1

H1 γ, α coefficients S5 up to Feb 1

LIGO-G060117-00-Z

11

H1 γ , α coefficients S5 up to Feb 1

H2 γ , α coefficients S5 up to Feb 1

LIGO-G060117-00-Z

13

H2 γ , α coefficients S5 up to Feb 1

How different is γ from unity?

- H1 :
 - » From estimates: median=0.97, std=2%
 - » Error in estimates: 0.6% systematic, 0.2% random
- H2:
 - » From estimates: median=1.02, std=3%
 - » Error in estimates: 1% systematic, 0.4% random
- L1:
 - » From estimates: median=1.01, std=3%
 - » Error in estimates: 0.2% systematic, 0.2% random

What's next?

- DQ flags have been produced, most at ends of segments.
- We are investigating some noticeable changes in coefficient values and errors.
- Will regenerate coefficients when a better loop model is available (hopefully without ad hoc corrections)
- Will generate coefficients for Feb 1 onwards. Files will be weeks to months long.
- Hope to generate 16 Hz time series to find fast fluctuations (if any)
- Will explore spectral content of time variations.