Power Stabilization to 3E-9 level

<u>Frank Seifert,</u> Patrick Kwee, Michele Heurs Benno Willke, Karsten Danzmann

Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute)

University of Hannover

LSC Hanford, March 21th, 2006

LIGO-G060115-00-Z

Max Planck Institute for Gravitational Physics (Albert Einstein Institute)

Universität Hannover

New Power Stabilization Setup

- laser system:
 - as simple as possible
 - prevent x-coupling of laser diode current into other observables
 - (frequency, beam geometry, etc.)

→ NPRO & power actuator independent from laser system (e.g. AOM)

- beam pointing:
 - may limit at 10⁻⁹-level at low frequencies
 - filtering or active stabilization required ?
 - use of different photodiodes? (larger ?)

→ filtering by PMC (F≈4100) & whole setup in vacuum & same photodiodes as before

- photodiode temperature:
 - chip temperature increases $\approx 10 \text{K}$ (P=130mW)
 - temperature coefficient ≈ 0.039 %/K (Datasheet Perkin Elmer)

→ active temperature stabilization

- optimization of stabilization loop
 - DC-coupled loop for stable operating point
 - AC-coupled loop for lowest noise
 - → DC & AC-coupled loop

DC & AC-coupled loop - Principle

Advantage:

- DC-coupled loop for stable operating point
- AC-coupled loop for lowest noise (not limited by noise of voltage reference)

Power Stabilization Setup

Results – DC & AC Coupled Loop

Critical Factors

- very (!) sensitive to ground loops
 - → avoid <u>any (!)</u> ground loop, even at RF (capacitive coupling)
 → independent supply of components

 - → battery powered devices
- beam pointing •
 - → reduction by PMC (passive filtering)
 - → proper adjustment of photodiodes (minimize with impressed pointing) (PZT behind PMC)
- acoustics •
 - \rightarrow shielded environment
 - \rightarrow proper mechanical design
- air currents • → vacuum

Photodiode Non-uniformity & Pointing

spatial uniformity measurement

pointing measurement

(when) does it limit the performance ?

Pointing Sensitivity Measurement

3 different methods → very good agreement

G060115-00-Z

Power Fluctuations Due To Pointing

Low Frequency Noise in PD's

- pre-stabilized laser system below 1E-8 level
- amplification <u>after</u> substraction of photocurrents
- temperature stabilized photodiodes
- vacuum tank

Balanced Detection Setup

Balanced Detection – First Experiment

first test of balanced detection setup with large area Si photodiodes without temperature stabilization:

G060115-00-Z

power stabilization to 3E-9 level - AEI Hannover

Balanced Detection – Results (1)

bias voltage dependence:

G060115-00-Z

Balanced Detection – Results (2)

temperature dependence:

Balanced Detection – Results (3)

power dependence:

Low Frequency Limit

PD low frequency noise limiting ?:

G060115-00-Z

Conclusion & Next Steps

- Still limited by unidentified noise source at low frequencies
 → low frequency noise in PD's good candidate
- future experiments:
 - low frequency noise in photodiodes

→ detailed characterization of different photodiodes (dependence on bias voltage, temperature, photocurrent, manufacturer, material (InGaAs, Ge), size (2mm, 3mm))

- influence of temperature fluctuations at the beamsplitter
 - \rightarrow temperature coefficient of the BS
 - \rightarrow TF temperature to RIN
- influence of photodiode temperature fluctutions
 - → temperature coefficient of PD's
 - \rightarrow TF temperature to RIN

spare slides

Photodiode Temperature Measurements

