

Jet Propulsion Laboratory California Institute of Technology

Coherent network analysis technique for discriminating GW bursts from instrumental noise

Patrick Sutton (CIT)

in collaboration with

Shourov Chatterji, Albert Lazzarini, Leo Stein (CIT), Antony Searle (ANU), Massimo Tinto (CIT/JPL)

LIGO-G060065-00-Z

Motivation

- Null stream formalism tests network data for consistency with gravitational waves
 - Y. Gürsel and M. Tinto, Phys. Rev. D 40, 3884 (1989)
 - Closely related to likelihood analysis of Klimenko et al (2005).
- Real interferometers have populations of *glitches*, bursts of excess power not due to gravitational waves
 - Can fool null-stream analysis.
- Extension of null stream technique to veto these glitches on the basis of their inconsistency with gravitational waves.
- Related to, but separate from, problems of
 - transient detection
 - source localization
 - waveform extraction.

Null Streams

• Consider output of network of detectors at one time / frequency bin:

LSC @ LHO 2006.03.21 Coherent network analysis technique for discriminating GW bursts from instrumental noise

GWBs vs Glitches

LSC @ LHO

2006.03.21

- GWB: Cancel out transient signal by forming null stream.
- Glitch: Independent signals can't cancel significant portion of energy.
- Energy measures: $E_{null} = \begin{bmatrix} d_1^* & d_2^* & \cdots & d_D^* \end{bmatrix} \begin{bmatrix} Q_{11} & Q_{12} & Q_{1D} \\ Q_{21} & Q_{22} & Q_{2D} \\ \vdots \\ Q_{D1} & Q_{D2} & \cdots & Q_{DD} \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_D \end{bmatrix}$
- E_{inc} := Autocorrelation terms ("incoherent energy"). Amount of energy expected in null streams for uncorrelated transient (glitch).

Coherent network analysis technique for discriminating GW bursts from instrumental noise

Sky Maps: Null Energy / DOF

- GWB and glitch constructed to have same time delays, size in each IFO.
- Null energy maps very similar.

LSC @ LHO

2006.03.21

• $\chi^2 \sim 1$ somewhere for both GWB and glitch.

Coherent network analysis technique for discriminating GW bursts from instrumental noise

Sky Maps: Incoherent Energy / DOF

- Incoherent energy maps almost identical.
- E_{inc} structure reflects network geometry, not signal.

LSC @ LHO 2006.03.21 Coherent network analysis technique for discriminating GW bursts from instrumental noise

Sky Maps: $(E_{null} - E_{inc}) / DOF$

- Removing E_{inc} makes signal interference fringes, source location clearer.
- Glitch has no strong interference fringes.

Coherent network analysis technique for discriminating GW bursts from instrumental noise

GWB vs. Glitch

- H1-L1-V1 network

-10⁴ sky positions in each plot

- use DFMs for GWBs and glitches

LSC @ LHO 2006.03.21 Coherent network analysis technique for discriminating GW bursts from instrumental noise

Measures of Correlation

• E_{null} - E_{inc} "total amount of energy cancelled in null stream"

E_{null} / E_{inc} "fraction of energy left in null stream"

E_{null} original Gursel-Tinto null energy

LSC @ LHO 2006.03.21 Coherent network analysis technique for discriminating GW bursts from instrumental noise

New Since GWDAW

- At GWDAW:
 - Preliminary results for GWBs vs. "pathological" glitches with same time delays, SNRs.
 - H1-L1-Virgo network @ design sensitivity
- Code improvements
 - better whitening, implement data overlapping
- More simulations
 - 10³ GWBs and glitches at each of 5 SNRs.
- Testing more statistics
 - E_{null} E_{inc} "total amount of energy cancelled in null stream"
 - E_{null} / E_{inc} "fraction of energy left in null stream"
 - original Gursel-Tinto null energy

– E_{null}

Waveforms: 3 DFMs (supernovae)

- Simulating a GWB:
 - Pick one DFM and add to all three IFO data streams
 - Simulating a glitch:
 - Add different DFM to each IFO data stream
 - Pathological glitches! Use same time delays, amplitudes as GWB.
- Shows method does not require that GWBs "look different" from glitches.

LSC @ LHO 2006.03.21

Coherent network analysis technique for discriminating GW bursts from instrumental noise

GWBS vs. Glitches: Most Correlated Positions

LSC @ LHO 2006.03.21 Coherent network analysis technique for discriminating GW bursts from instrumental noise

ROC: Distinguishing GWBs from Glitches

- Test efficacy vs SNR of signal.
 - For comparison,
 WaveBurst in S3
 had 50% detection
 efficiency for
 SNR > 15-20.

LSC @ LHO 2006.03.21 Coherent network analysis technique for discriminating GW bursts from instrumental noise

LSC @ LHO 2006.03.21 Coherent network analysis technique for discriminating GW bursts from instrumental noise

Energy Difference: E_{null} - E_{inc}

 Not as good as fractional energy E_{null}/E_{inc}.

LSC @ LHO 2006.03.21

Coherent network analysis technique for discriminating GW bursts from instrumental noise

LSC @ LHO 2006.03.21 Coherent network analysis technique for discriminating GW bursts from instrumental noise

Using only Null Energy (GT)

Very poor at discriminating GWBs from glitches.

LSC @ LHO 2006.03.21 Coherent network analysis technique for discriminating GW bursts from instrumental noise

Conclusions

- Generalized Gursel-Tinto null stream technique to arbitrary detector networks.
 - Formally equivalent to likelihood procedure of Klimenko et al. (2005).
- Added second energy measure: "incoherent energy" E_{inc}.
 - Based on energy expected in null stream for *uncorrelated* signals (as opposed to GWBs)
- Fractional energy cancelled in null stream looks promising for discriminating GWBs from glitches.

To Do List

- Paper will be out to LSC this week
 - target journal PRD
- Apply to real data (LIGO-GEO / LIGO-Virgo)
- Source localization and waveform extraction tests
 SURFs from 2005 & 2006