The Ins and Outs of Inspiral Searches

Peter Shawhan Caltech / LIGO For the LSC Inspiral Analysis Group

Syracuse University March 3, 2006

LIGO-G060036-00-Z

To lowest order, gravitational wave emission is determined by second time derivative of mass quadrupole moment tensor

$$h_{ij}^{\rm TT} = \frac{2G}{c^4 R} \mathcal{P}_{ijab}(\mathbf{N}) \left\{ \frac{d^2 \mathbf{Q}_{ab}}{dT^2} (T - R/c) + \mathcal{O}\left(\frac{1}{c}\right) \right\} + \mathcal{O}\left(\frac{1}{R^2}\right)$$
Projection depending on wave direction

See: Luc Blanchet, "Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries", *Living Rev. Relativity* **5**, (2002), 3. http://www.livingreviews.org/lrr-2002-3

LIGO

A compact binary system is *all* quadrupole moment!

Power emitted in gravitational waves:

$$\mathcal{L} = \frac{G}{5c^5} \left\{ \frac{d^3 \mathbf{Q}_{ab}}{dT^3} \frac{d^3 \mathbf{Q}_{ab}}{dT^3} + \mathcal{O}\left(\frac{1}{c^2}\right) \right\}$$

To lowest order, as gravitational waves carry away energy:

Frequency:
$$f(t) \propto (t-t_c)^{-3/8}$$

Waveform: $h(t) = A(t) \cos(B(t-t_c)^{5/8} + \phi_c)$
 $= A'(f) \cos(B' f^{-5/3} + \phi_c)$
 $\Psi(f)$

"Post-Newtonian" corrections change phase evolution:

$$\Psi(f) = 2\pi f t_c + \frac{3}{128\eta} (\pi m f)^{-5/3} + \frac{5}{96\eta} \left(\frac{743}{336} + \frac{11}{4}\eta\right) (\pi m f)^{-1}$$

$$-\frac{3\pi}{8\eta} (\pi m f)^{-2/3}$$

$$+\frac{15}{64\eta} \left(\frac{3058673}{1016064} + \frac{5429}{1008}\eta + \frac{617}{144}\eta^2\right) (\pi m f)^{-1/3}$$
2PN

$$+ \cdot \cdot$$

where

$$m = (m_1 + m_2), \quad \eta = \frac{m_1 m_2}{m^2}$$

Source Parameters vs. Signal Parameters

Source parameters

Masses (m1, m2)

Spins

LIGO

Orbital phase at coalescence

Inclination of orbital plane

Sky location

Distance

- \rightarrow Maximize analytically when filtering \neg
- \rightarrow \rightarrow Simply multiplicative for a given detector

→ Simply multiplicative

Filter with orthogonal templates, take quadrature sum

5

Optimal Matched Filtering in Frequency Domain

Look for maximum of |z(t)| above some threshold \rightarrow trigger

Search overlapping intervals to cover science segment, avoid wrap-around effects

LIGO

Estimate power spectrum from bin-by-bin median of fifteen 256-sec data segments

Dealing with Non-Stationary Noise

Matched Filtering Susceptibility to Glitches

Waveform Consistency Tests

Tests using filter output

LIGO

e.g. time above threshold

Analysis "Pipeline" for Computational Efficiency

Template Bank Construction

Template Bank Construction in (τ_0, τ_3) space

Ellipses in Mass Space

LIGO

LIGO-G060036-00-Z

Uncertain Waveforms for High-Mass Inspirals

Different models for 10+10 M_{sun} black hole binary inspiral

Buonanno, Chen, and Vallisneri, Phys. Rev. D 67, 104025 (2003)

Can match the various waveform models rather well

LIGO

This is intended for binary components with negligible spin

Another BCV detection template family for systems with spin

Six more analytically calculated parameters

LIGO

One more search parameter \Rightarrow 4-dimensional parameter space

What population characteristics do we expect ?

Neutron star binaries

LIGO

Mass distribution from population synthesis simulations Not certain Spatial distribution following blue light luminosity? Have placed limits on rate per Milky Way equivalent galaxy

Issues of Astrophysical

Interpretation

Primordial binary black holes in the galactic halo

Can make a reasonable spatial model

Don't know mass distribution

BH+BH and BH+NS binaries

Don't have a handle on mass and spatial distributions

Searching for inspiral signals is simple in principle but fairly complicated in practice

Have to deal with non-stationary noise

Have to use a multi-stage pipeline to keep computational costs under control

Astrophysical interpretation is nontrivial – but that's where the excitement will be, eventually!