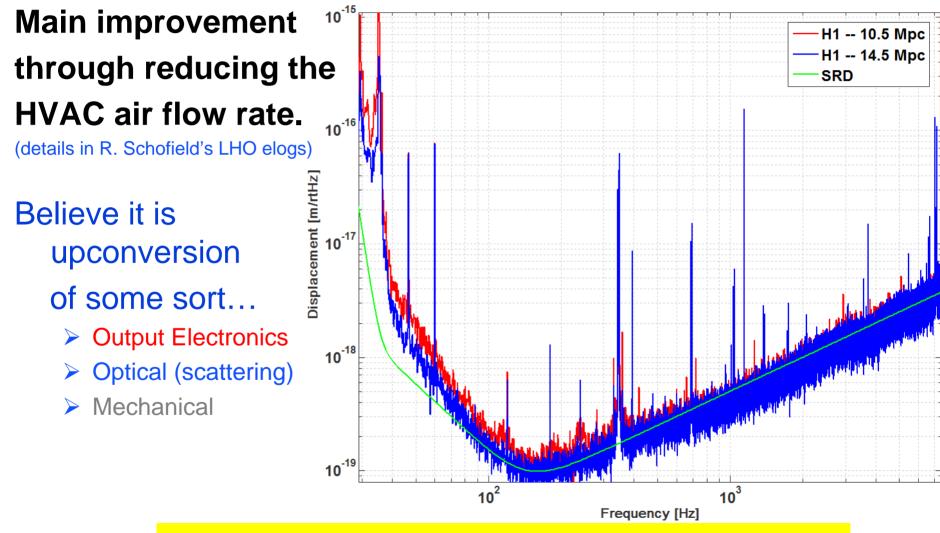
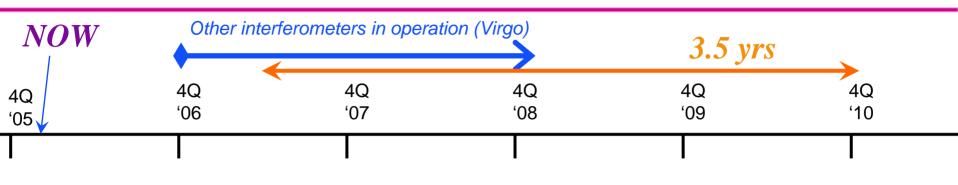

Interferometer Improvements after S5

Rana Adhikari



Low frequency excess/mystery noise

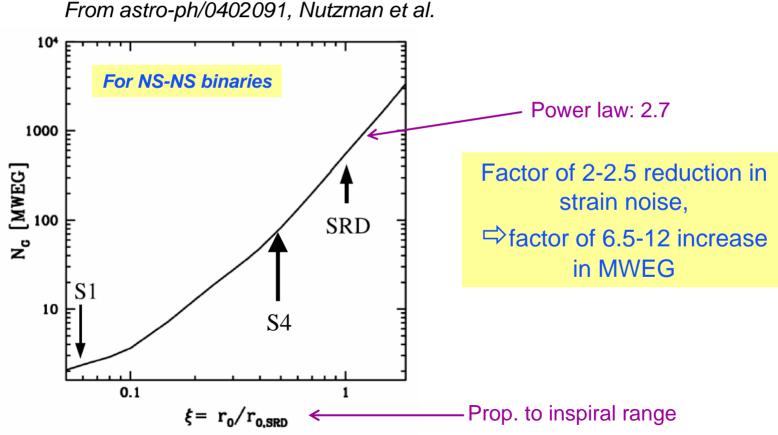


G060030-00-I

LIGO

This topic needs more work before we plan too far. 5

Time Scale



- Between S5 & AdvLIGO, there is time to improve the interferometers...
 - 1) How to apportion time between commissioning and science run?
 - 2) Substantial improvements on 2 IFOs or moderate improvements on 3?
 - 3) Coordinate science runs with VIRGO / GEO

Astrophysical Motivation

How does the number of surveyed galaxies increase as the sensitivity is improved?

Some Considerations

- ~2 years for installation and commissioning
- ~1 ½ years for data taking
- Use Advanced LIGO technologies wherever possible
- Plan should consider contingency options for potential AdLIGO delays
- Initial LIGO components/features that are not candidates for upgrade
 - Core Optics (except possible spare replacements)
 - ✤ Isolation stacks
 - ♦ IFO beam path (e.g., no suspension change that moves the optic)
 - ♦ Vacuum system
 - Buildings/Facilities (no major changes)

Resource constraints

Budget

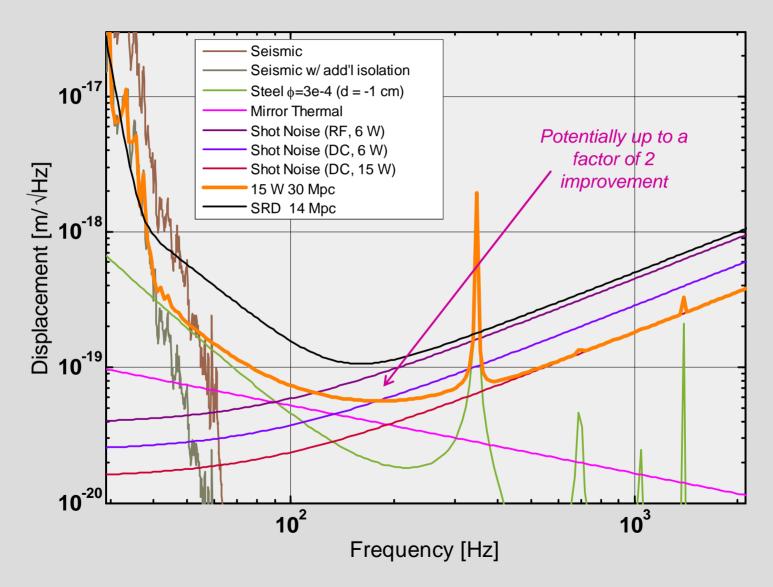
LIGO

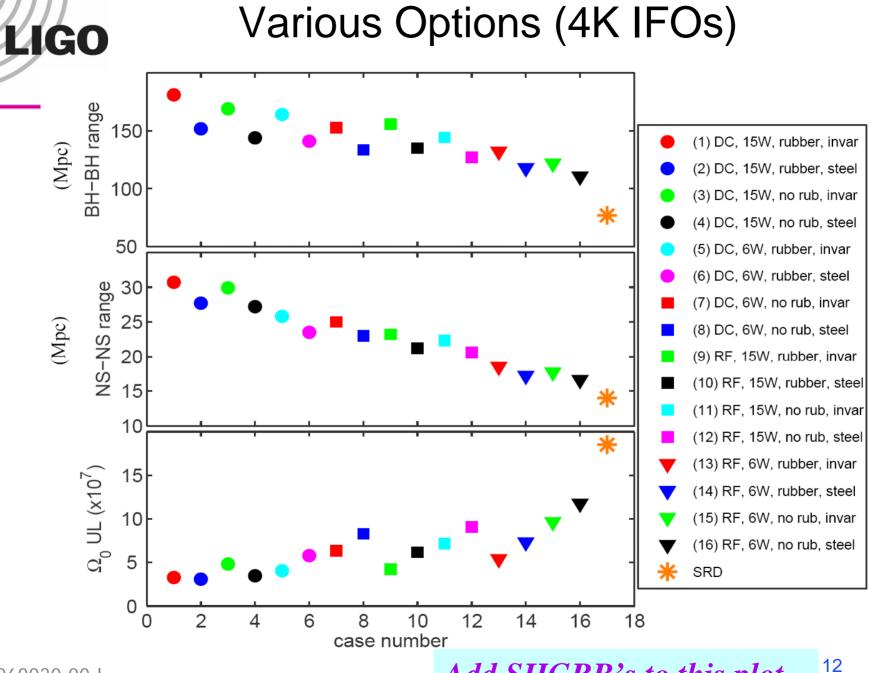
LIGO Lab funding for this is tight: ~ \$1-1.5M, over a couple of years, available for Detector upgrades

Schedule

- Plan should ease (not delay) Advanced LIGO implementation
- Feasible, debuggable upgrades
- Should consider: what happens if AdvLIGO is delayed?

People


- Cannot drain time from AdvLIGO R&D team
- Can use site staff and initial-LIGO commissioning people



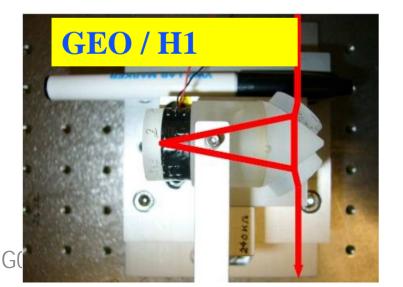
Proposed Improvements

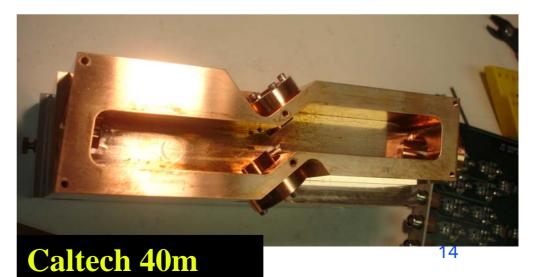
- 1. Output mode cleaner
 - 1. In-vacuum implementation
 - 2. DC Gravity Wave detection as in AdvLIGO (RF fallback)
 - 3. Possibly w/ an AdvLIGO HAM stack
- 2. Higher power laser
 - 1. Amplify existing MOPA...
 - 2. w/ Laser-Zentrum Hanover (LZH) AdLIGO technology
 - 3. or w/ commercial amplifiers
- 3. High Power Input Optics (Modulators/Isolators)
- 4. Seismic noise suppression (indirectly)
- 5. Suspension thermal noise improvement
- 6. Miscellaneous ...

Fundamental noise sources for an improved detector

G060030-00-l

Add SHGRB's to this plot



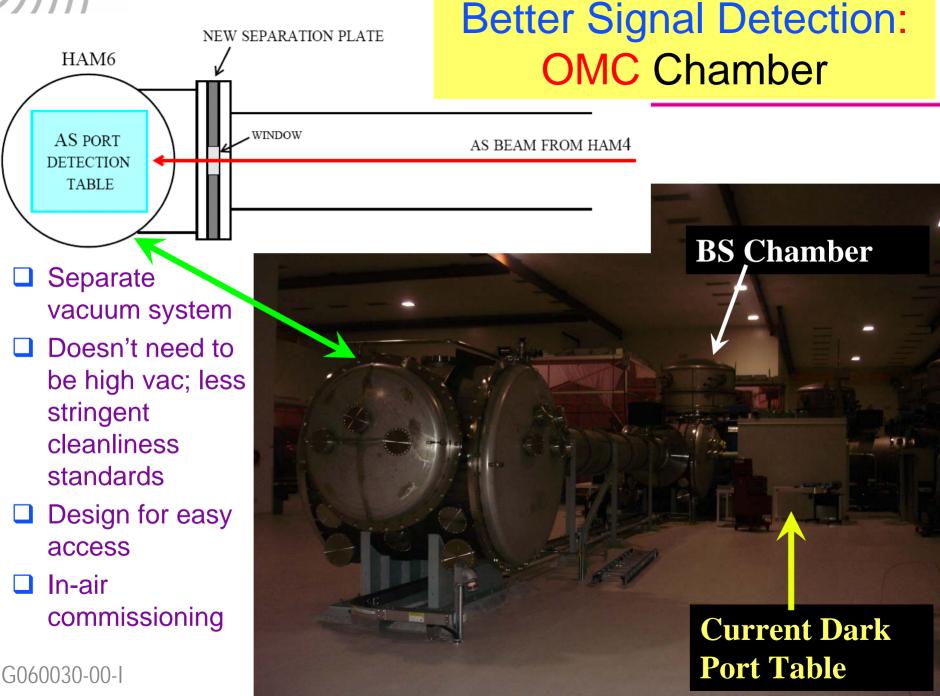

- 1. Output mode cleaner
 - 1. In-vacuum implementation
 - 2. DC Gravity Wave detection as in AdvLIGO (RF fallback)
 - 3. Possibly w/ an AdvLIGO HAM stack
- 2. Higher power laser
 - 1. Amplify existing MOPA...
 - 2. w/ Laser-Zentrum Hanover (LZH) AdLIGO technology
 - 3. or w/ commercial amplifiers
- 3. High Power Input Optics (Modulators/Isolators)
- 4. Seismic noise suppression (indirectly)
- 5. Suspension thermal noise improvement
- 6. Miscellaneous ...

Better Signal Detection: Output Mode Cleaner

Basic Motivations

- Limited by photodetector saturations; OMC removes most of the junk light
- Removing the junk light reduces shot noise
- DC Readout (AdvLIGO baseline) has technical noise benefits:
 - RF Oscillator phase noise (significant at ~few kHz)
 - Laser frequency noise (close to limiting)
- Past OMC testing on H1 showed benefits, but was noisy
- Critical for any high power operations (H2 only uses 2.5 W of laser power)

Better Signal Detection: Output Mode Cleaner

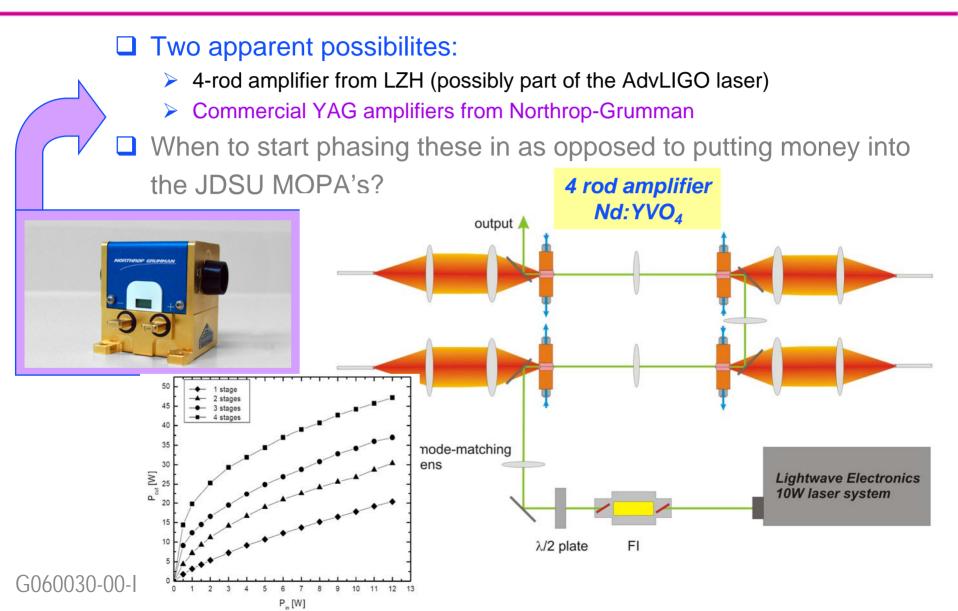

- 1. In-vacuum Cavity and Photodetectors*
 - 1. Hanford 4K experience: too much seismic/acoustic noise
 - 2. In an unused HAM chamber (HAM6)
 - 3. Baseline for AdvLIGO
- 2. Seismic Isolation (a few possibilities)
 - 1. LIGO-I style passive stack
 - 2. AdvLIGO HAM (baseline: 2-stage 'stiff' system)
 - 3. Commercial passive isolation (Pneumatic, Minus-K, etc.)
- 3. In-Vac Photodetectors
 - 1. Being developed at the 40m for the DC readout experiments
 - 2. Pair of 2 mm InGaAs diodes with load resistors and LT1128's
- 4. In-Vac Auto-alignment w/ PZTs
 - 1. Re-use the LIGO-I RBS PZTs (bulk of the cost)
 - 2. In-vac mode matching telescope w/ pico motors

G060030-00-I

LIGO

 Items in blue being tested at the 40m this summer

ノノノノノノ


Seismic Isolation for OMC

- Requirements are not well known: something 'better'
- Cheap and simple approaches
 - Make an initial LIGO stack (or a pre-LIGO Viton stack)
 - Passive commercial system
- Advanced LIGO HAM seismic isolation system
 - o Baseline: 2-stage active
 - Single stage active system (1 table or HEPI + 1 table)
 - Single stage very low frequency passive system (HAM SAS)
 - Prefer to install the AdvLIGO stack but...
 - A more costly approach, and the HAM seismic development may not be soon enough.

• OMC Suspension

- Would include OMC + Photodetectors
- Requirements? Beam Jitter?

Higher Power Laser

Handling Higher Power (~3x)

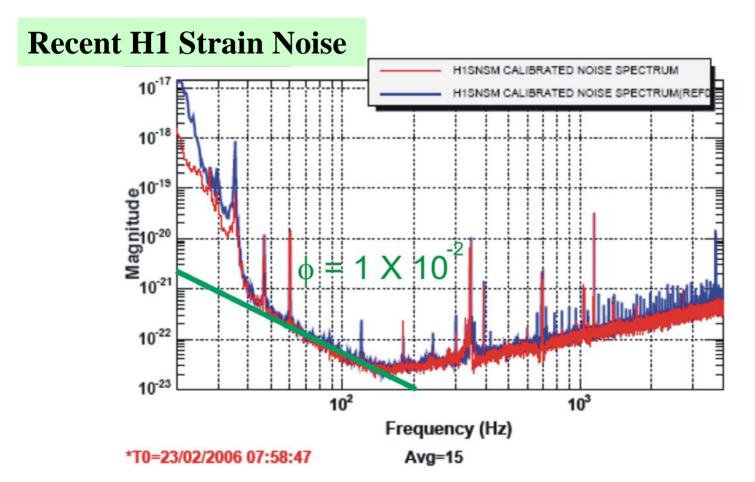
☆ Core Optics

LIGO

- Thermal Lensing
 - We are at the TCS noise limits
 - H2 cannot handle more power with existing TCS (H1,L1 are OK)
 - Need to think about ring heaters and how to do more accurate TCS
 - Wipe down more optics?
- Radiation Pressure Effects (angular optical spring)

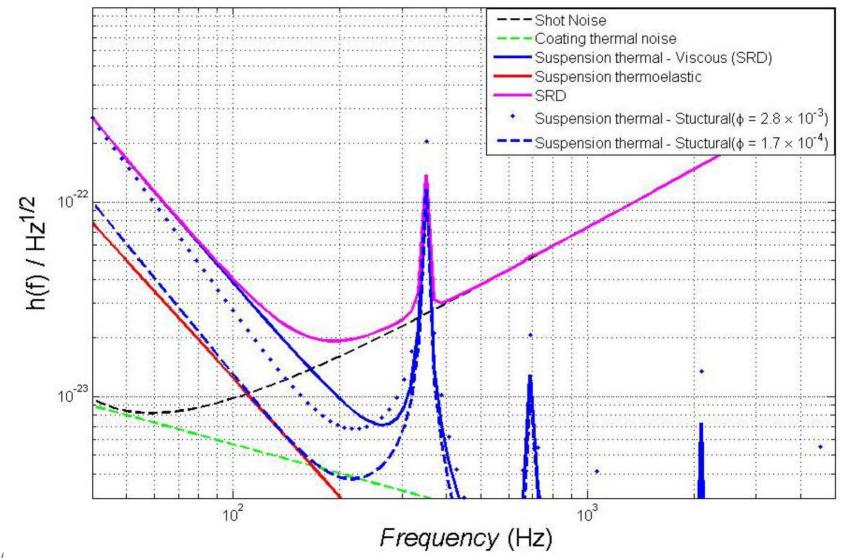
☆ Input Optics

- Modulators (single EOM for 3 frequencies / AdvLIGO design)
- □ Faraday Isolator (AdvLIGO style, similar to H2)
- □ (pre) Mode Cleaners (need to be cleaned; increase throughput)

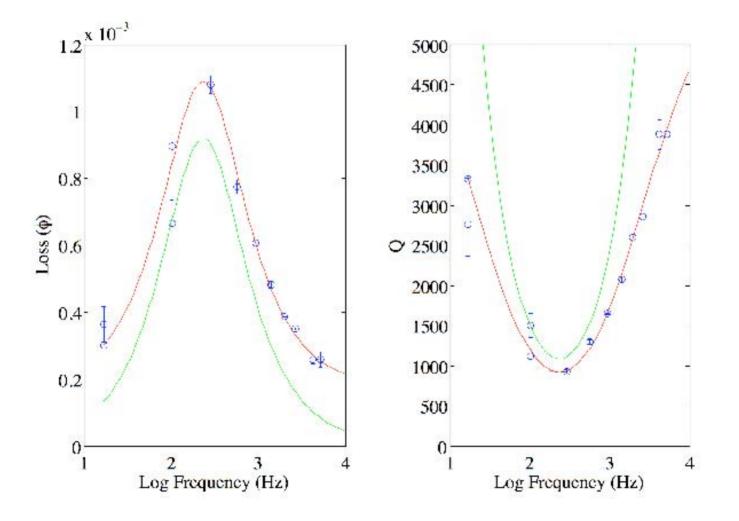

☆ Output Optics

- Output Mode Cleaner removes the junk light
- ~100 mW of light for DC readout

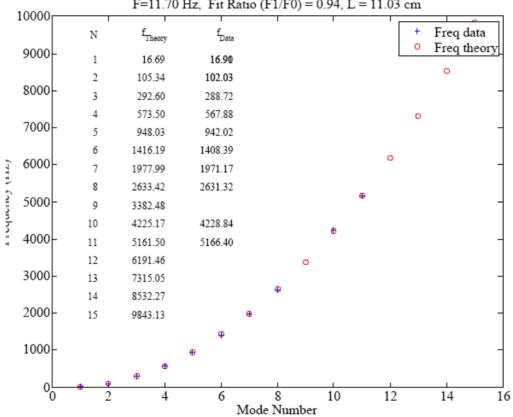
Seismic Noise


- PEPI/µFFI at LHO: less upconversion from 1-3 Hz and reduce glitch rate (as seen by the glitch group)
- More HEPI Tuning at LLO
 - Resonant gain filters
 - Different operating modes (logging mode, storm mode)
- Building Noise Remediation
 - > HVAC fan flow rate shown to be tied to 50-100 Hz upconversion
 - > Wind noise susceptibility; airfoils? Tents?
 - Need to study the duty cycle hit during S5 to prioritize.
- Additional passive isolation at the pier top to lower the seismic wall frequency

LIGO Suspension Thermal Noise


Worst wire loss inferred from *in situ* violin mode measurements: $\phi = 5.6 \ 10^{-3}$

LIGO Thermal Noise in Initial LIGO


G06060000.

Steel Wire: $\phi_{str} = 1.70e - 04 \pm 7e - 06$, $\alpha = 1.14e - 05 \pm 2e - 07$, $\kappa = 37.3 \pm 0.5$, $C_m = 486.0$

ŀ

LIGO

F=11.70 Hz, Fit Ratio (F1/F0) = 0.94, L = 11.03 cm

LIGO Sensitivity Effects of Suspension Thermal Noise

	Binary Neutron Star	Binary Black Holes (10M _o)	Stochastic	Crab Pulsar ε
SRD	16 Мрс	60 Mpc	4.1 10-6	1.8 10 ⁻⁵
φ = 2.8 10 ⁻³ Typical <i>in situ</i>	19 Мрс	75 Mpc	2.8 10-6	1.6 10 ⁻⁵
φ = 1.7 10 ⁻⁴ Wire material limit	27 Мрс	120 Mpc	6.6 10 ⁻⁷	6.8 10 ⁻⁶
Thermoelastic limit	29 Мрс	135 Mpc	4.6 10 ⁻⁷	5.7 10 ⁻⁷

Single Interferometer Values

Enhancements that may address robustness or low-freq noise

Scattered light control

- End station beam tube baffles may be tried during S5
- Vertex beam tube baffles: new ones would need to be made to accommodate the TCS lasers and installed (post-S5)

Seismic isolation of detection tables

- Already limiting the WFS noise on H1
- Pneumatic system installed on H2
- Put WFS1 in vac? Isolate symmetric port table? Move WFS2 in vac?
- Fast stabilization of beam pointing on detection tables (included for AS port as part of OMC work)
- Suspension Actuation Electronics rework
 - More filtering -> lower noise
 - Re-align some test masses to reduce large angle bias currents

LIGO

Beyond 'Fixes'

Suspension wire re-working

- Change the clamp to reduce excess noise (no evidence so far)
- Change the wire to reduce the intrinsic noise
- > Needs some serious coil driver redesigns capitalize on lower noise.
- Need to know more about the excess noise first.

Squeezed Light

- Implement on one IFO instead of the laser upgrade; more speculative, but doesn't require new IO equipment.
- An opportunity to commission another AdvLIGO system

Signal Recycling

No real sensitivity improvement; lots of work.

Double Suspension

- > Not directly applicable to AdvLIGO. Substantial reworking req.
- \succ Not clear if we can get the technical noises out of the way.

Need to Decide on a Plan

- What improvements should we go for?
 - Topic introduced and initial ideas presented at the March 2005 LSC meeting
 - White paper on enhancements written (T050252) and distributed to LSC in November
- What's the strategy for implementation?

Weighting a few Categories

Sensitivity Improvements
Increased Duty Cycle
Implementation of AdvLIGO technology

LIGO

Plan #1a

- Install OMC/HAM system on L1 after S5
- ♦ H1/H2 continues Science running w/ Virgo
- ♦ Get L1 back on the air then do H1/H2 OMCs
- ◆ Laser/IO installed on L1 as soon as H1 or H2 is on.
- ◆ Laser/IO work on H1 after L1 is up.

Slow, conservative plan. Allows for maximal debugging for repeating mistakes. Maintains coincidence with Virgo/GEO at all times for maximum detection 'safety'.

- ◆ Install OMC/HAM system on H1/H2 after S5
- L1 continues Science running w/ Virgo
- Get H1 back on the air then do L1 OMC+Chamber.
- ◆ Laser/IO installed on H1 as soon as L1 is on.
- ◆ Laser/IO work on L1 after H1 is up.

Same as Plan #1a, but with the installation order swapped. Different expertise between observatories may favor one plan over the other.

Plan #2

- Simultaneous OMC installation on L1 with Laser/IO work on H1/H2 immediately after S5.
- Simultaneous OMC installation on H1/H2 with Laser/IO work on L1.
- ◆ Install baffles, re-align test masses, do wipe downs.

Faster plan. Still allows finding problems before propagating them. No coincident running with Virgo until S6.

Plan #3

- Bundle all in-vac together: OMC window, MC clean, Faraday, Baffles, COC re-alignments
- ◆ Install laser on H2 while H1/L1 resume science running
- Install IO/laser on H1/L1 while H2 runs w/ Virgo

Some downtime after S5, but maintains some coincident runtime.

Plan #4

- ◆ OMC/Laser/IO work on H1/L1 install window on H2.
- Focus on H1/L1-electronics rework, commissioning effort, etc.
- Only work on H2 after achieving a new sensitivity goal with H1/L1.

Mostly ignore the 2K, put all effort and resources into pushing the 4K limits.

□ In the next weeks before the LSC meeting...

- Assemble a budget
- Some schedule estimates for the major tasks
- □ At the LSC meeting...
 - More discussion, maybe a consensus?
 - Decide on what tests need to be done.
- •

Who's working on what

o Output Mode Cleaner System

- 1. Overall Integration / Layout (D. Sigg)
- 2. DC PD's (B. Abbott, R. Adhikari)
- 3. DC OMC design (R. Ward, R. Adhikari)
- 4. RF OMC design (K. Kawabe ?)
- 5. OMC alignment system (D. Busby, S. Waldman)
- 6. OMC Suspension / modeling (V. Mandic)
- **7**. HAM
 - 1. Passive stack (?)
 - 2. AdvLIGO 2-active stage (Giaime, Lantz, et al)
 - 3. HAM-SAS (DeSalvo, et al)

o Higher power laser

- 1. LZH Amplifier (P. Fritschel, B. Willke)
- 2. CEO amplifiers (J. Giaime, D. Ottaway, + students)

LIGO

Who's working on what (cont.)

- o Seismic Noise Suppression
 - 1. PEPI (M. Landry, R. Mittleman)
 - 2. HEPI Tuning (S. Wen, B. O'Reilly, J. Giaime)
 - 3. Building Noise (R. Schofield, J. Worden, B. O'Reilly)
 - 4. ISC Table Isolation (P. Sarin, R. Mittleman, R. DeSalvo, R. Schofield)
 - 5. Fast ISC Table Alignment system (S. Waldman, K. Kawabe)
- o Suspension Studies / Rework
 - 1. Characterizing initial LIGO SUS (S. Penn, G. Harry, F. Raab)
 - 2. New wire suspension design (S. Penn, G. Harry, R. Weiss, F. Raab)
- o Coil Driver Noise Reduction
 - 1. SUS alignment plan (D. Cook, B. Bland, H. Overmier)
 - 2. New bias modules (R. Abbott, R. Weiss)
 - 3. Coil Driver redesign (R. Abbott, K. Watts, R. Adhikari)

LIGO

Who's working on what (cont.)

o Upconversion Studies

- 1. Output Electronics (V. Sandberg, V. Frolov)
- 2. Seismic (R. Schofield, B. O'Reilly, S. Wen)
- 3. Scattering (R. Schofield, R. Weiss, B. O'Reilly)
- 4. 60 Hz mitigation (R. Schofield, R. Weiss, M. Zucker, K. Watts)
- 5. Fast ISC Table Alignment system (S. Waldman, K. Kawabe)
- o Thermal Compensation Upgrade
 - 1. Better techniques (P. Willems, D. Ottaway)
 - 2. Modeling (H. Yamamoto, P. Willems)