Violin mode damping for the ETM/ITM QUAD suspensions

K.A. Strain

Jan 2006

G060004-00-K

Requirements

- recovery after disturbance
 - natural Q ~10¹⁰
 - freq. ~ n.400 Hz
 - natural damping time several days
 - could need 10 or more times this to recover
 - want ~1000 times faster damping Q~few million
- controllability
 - want LSC bandwidth > ~100 Hz
 - violin modes affect TM and PM feedback
 - helpful if notches do not need to be too deep
- if first requirement is met second is easily met

Response (T050267-00-K)

Model

- Mark Barton's SUS toolkit + global control model
- SUS model
 - 5-bead violin strings for last stage incl. stiffness
 - otherwise rather complete quad model
 - export state-space to MATLAB
 - extend to ribbons by factoring in dilution factor
- LSC model
 - crude, but with the essential elements
 - not meant to be used to answer actuator force questions
 - enables tests of active and passive damping
- thermal noise model (Geppo + material developed from Gossler)
 - for passive damping of violin modes
 - extrapolates GEO results

Passive damping

Amorphous Teflon?

- ribbons are under more tension than GEO fibres, and noise requirements are much more severe
- not possible to reach target Qs (by far)
- PM tuned dampers
 - many needed (4 x ~4 modes per suspension)
 - must be rather high Q to achieve efficient coupling (40kg mass) probably drift off resonance with temperature/time
 - not promising

Active damping

Goal

- to damp the first few modes of each ribbon (up to ~1.6 kHz)
- higher modes couple less and are much less likely to be excited
 - implies limit for stiffness of stops so that high frequency jarring of the suspension is minimised
 - structure is quite soft, as are stops, so it seems unlikely that modes above 1.6 kHz should be excited
 - needs some care in design

Feedback

- PM
 - actuators already fitted
 - ribbon stiffness makes good coupling
- ribbons
 - new actuators needed
 - could be co-located to damp more modes

Active damping 2

- Sensing location
 - PM
 - needs low noise sensor (100 dB lower than below)
 - hard to make filter since sensor and actuator see 4 ribbons and there is only one signal path
 - Ribbon
 - relatively relaxed noise target (possibly 10⁻¹¹ m/Hz^{1/2} but TBD)
 - 4 individual and relatively simple filters can be employed (e.g. 4 complex poles and zeros plus one real pole and zero sufficed in the MATLAB model)

Active damping 3

Sensing location

- sensor should be close top of ribbon (to allow max. number of modes to be damped)
- need to have 1 mm range in 2D (unknown ribbon position)
- optical?
 - possible but complex and perhaps hard to align, perhaps heavy
- electrostatic?
 - possible (acc. Nick Lockerbie and elementary model), light, easy to align
 - design work to start soon
- Costs (for proposed ribbon sensing PM feedback)
 - increased number of ADC channels (4/quad)
 - additional wiring through SEI etc. 4 signals/quad