Study of a quantum nondemolition interferometer using ponderomotive squeezing

Ochanomizu University, National Astronomical Observatory of Japan^A, and Max-Planck-Institut für Gravitationsphysik^B Shihori Sakata, Seiji Kawamura^A, Shuichi Sato^A, Kentaro Somiya^B, Koji Arai^A, Mitsuhiro Fukushima^A, and Akio Sugamoto

October 6, 2005 Australia-Italy Workshop on GW Detection AIGO Research Facility and Gravity Discovery Centre, Gingin, Western Australia

LIGO-G050546-00-Z

Contents

1. Introduction

- » Quantum noise
 - Standard quantum limit (SQL)
- » Vacuum fluctuations
 - Ponderomotive squeezing
- » Homodyne detection
- 2. Interferometer to generate ponderomotively squeezed vacuum fluctuations
 - » Michelson interferometer
 - How much mass of end mirrors is needed to achieve the SQL
 - » Fabry-Perot Michelson interferometer
 - To overcome the SQL utilizing ponderomotively squeezed vacuum fluctuations
 - Discussion of experimental parameter
 - Detection of the ponderomotive squeezing by homodyne detection
- 3. Summary
- 4. Future plan

1. Introduction

Sensitivity of GW detectors will be limited by quantum noise

- » Shot noise
 - Spectral density of the shot noise 1/P,
 - P: laser power
 - The shot noise arises from uncertainty due to quantum mechanical fluctuations in the number of photons in the interferometer of
- » Radiation pressure noise
 - Spectral density of the radiation pressure noise
 - The radiation pressure arises from displacement
 Induced by radiation-pressure fluctuations
 10⁻²⁰
- » Standard quantum limit
 - A point at which the shot noise equals radiation pressure noise

October 6, 2005 Australia-Italy Workshop on GW Detection

Shihori Sakata

Vacuum fluctuations

- In the next generation, the sensitivity of the interferometer will be limited by the quantum noise at most of frequencies
 - » Vacuum fluctuations entering an anti-symmetric port of conventional interferometer
 - Expression of the vacuum fluctuations using two quadrature amplitudes $a_1()$ and $a_2()$ which are made by the combination of annihilation operators $a_{\pm}(_0 \pm)$

October 6, 2005 Australia-Italy Workshop on GW Detection

Shihori Sakata

Ponderomotive squeezing

The vacuum fluctuations is ponderomotively squeezed by back action of mirror motion due to fluctuating radiation pressure on test masses

Homodyne detection

- Using conventional readout scheme, in case of detecting the ponderomotively vacuum fluctuations, the sensitivity is limited by the SQL
- However, by using homodyne detection that is one of the quantum nondemolition devices, the sensitivity will be able to beat the SQL
 - » Optimization of the homodyne phase make it the best signal-to-noise ratio

October 6, 2005 Australia-Italy Workshop on GW Detection

Shihori Sakata

2. Interferometer to generate ponderomotively squeezed vacuum fluctuations

- We calculate generation of the ponderomotive squeezing using Michelson interferometer and Fabry-Perot Michelson interferometer
 - » In the calculation conditions is that:
 - Parameters
 - Laser power $I_0 = 1W$
 - Phase modulation frequency due to the mirror motion
 - =1kHz
 - : cavity pole
 - Arm length=10cm
 - The sensitivity assumes to be limited by only the quantum noise
 - Loss is zero
 - End mirror reflectivity: 1
 - The sensitivity achieves the SQL, then beat the SQL by extracting the ponderomotive squeezing at the SQL
 - The homodyne phase is independent of frequency
 - » Reference: H.J.Kimble et al. Phys.Rev.D 65, 022002 (2002)

Generation of ponderomotive squeezing using Michelson interferometer

- In case of measuring the output quadrature field by means of the conventional readout scheme,
 - » The noise spectral density: $S_h = \frac{h_{SQL}^2}{2} \left(\frac{1}{\mathcal{K}_{MI}} + \mathcal{K}_{MI} \right)$
 - » where $\mathcal{K}_{\mathrm{MI}} = \frac{4I_0\omega_0}{m_rc^2\Omega^2}, \quad m_r = \frac{Mm}{M+m}$
 - The sensitivity achieves the SQL, where $K_{\rm MI} = 1$
 - m_r : reduced mass, M_{BS} : BS mass, ω_0 : laser angular frequency
- how much mass of the end mirror is needed to achieve the SQL?
 - » The end mirror mass: 1 ng
 - BS mass: 500 g
 - » The reduced mass: $m_r = \frac{4I_0\omega_0}{c^2\Omega^2}$
 - Experimentally generation of the ponderomotive squeezing is very difficult
 - $\ \ \, \ \ \, \ \ \, \ \ \, m_r ~~ I_0$

Generation of ponderomotive squeezing using Fabry-Perot Michelson interferometer

- In case of measuring the output quadrature field by means of the conventional readout scheme,
 - » The noise spectral density: $S_h = \frac{h_{SQL}^2}{2} \left(\frac{1}{\mathcal{K}_{FPMI}} + \mathcal{K}_{FPMI} \right)$

where
$$\mathcal{K}_{\text{FPMI}} = \frac{4I_0\omega_0}{m_r r_F} \left(\frac{T_F \mathcal{F}}{\pi c \Omega(1-r_F)}\right)^2$$
, $m_r = \frac{Mm}{M+m}$

- $\ m_E \ \mathcal{F}^2$
 - The sensitivity achieves the SQL, where $K_{\rm MI} = 1$
 - m_r : reduced mass , M_F : front mirror mass
 - r_F : amplitude reflectivity of front mirror, T_E : intensity transitivity of end mirror
- Making finesses \mathcal{F} ten times is the same effect as making end mass $m_E 100$ times
 - \mathcal{F} :10000 m_E:500g
 - \mathcal{F} :1000 m_E:5g
 - \mathcal{F} :100 m_E:50mg

Experimental parameter

Discussion of experimental parameter

- » The sensitivity achieves the SQL at $_{SQL} = 1 \text{ kHz}$
- » The noise spectral density: $S_h = \frac{h_{SQL}^2}{2} \left(\frac{1}{\mathcal{K}_{FPMI}} + \mathcal{K}_{FPMI} \right)$
 - Finesses \mathcal{F} 1/10 times and mass m 1/100 times does not change the frequency
 - Radiation pressure noise 1/m, \mathcal{F}
 - Shot noise $1/\mathcal{F}$
 - By making the sensitivity worse,
 achievement of the SQL is more possible
- Noises other than the quantum noise
 - » Suspension thermal noise
 - becomes worse
 - Roughly $1/(m)^{1/2}$

Beat the SQL

In case of measuring the output quadrature field by homodyne detection,

- » The sensitivity is obtained by $S_h = \frac{h_{SQL}^2}{2\mathcal{K}_{FPMI}} \left(1 + (\cot \eta \mathcal{K}_{FPMI})^2\right)$
- » At the SQL, the homodyne phase is optimized by

3. Summary

By extraction of the ponderomotive squeezing at the SQL, the sensitivity will beat the SQL

- » Discussion of interferometer to generate the ponderomotive squeezing
 - Michelson interferometer and Fabry-Perot Michelson interferometer
 - Loss is zero
 - The sensitivity assumes to be limited by only the quantum noise
 - Finesses \mathcal{F} 10 times is equivalent to the mass m 100 times
- » Experimental parameter
 - The sensitivity achieves the SQL at _{SQL}=1kHz
 - Finesses $\mathcal{F} = 1/10$ times and mass m = $\tilde{1}/100$ times does not change the frequency
 - At the SQL, $K_{\text{FPMI}} = 1$
 - By making the sensitivity worse, achievement of the SQL is more possible
- » At the SQL, the homodyne phase is optimized by
 - Ponderomotive squeezing of 4 dB @ $_{SQL}$ =1kHz
 - Homodyne phase =45 °
 - $m_E = 800 mg$, $\mathcal{F} = 1000$

4. Future plan

Design of end mirrors

- » Design of suspension
- » Thermal noise
- Photo detection
 - » Homodyne detection or DC readout