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1. Introduction

Sensitivity of GW detectors will be limited by quantum noise
» Shot noise 

– Spectral density of the shot noise
∝ 1/P, 
– P: laser power
– The shot noise arises from uncertainty 
due to quantum mechanical fluctuations in
the number of photons in the interferometer output

» Radiation pressure noise
– Spectral density of the radiation
pressure noise ∝ P
– The radiation pressure arises from displacement 
Induced by radiation-pressure fluctuations

» Standard quantum limit
– A point at which the shot noise
equals radiation pressure noise 10
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Vacuum fluctuations

In the next generation, the sensitivity of the interferometer will 
be limited by the quantum noise at most of frequencies
» Vacuum fluctuations entering an anti-symmetric port of conventional 

interferometer
– Expression of the vacuum fluctuations 
using two quadrature amplitudes a1(Ω) and 
a2 (Ω) which are made by the combination of
annihilation operators a± (ω0±Ω) 
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Ponderomotive squeezing

The vacuum fluctuations is ponderomotively squeezed by 
back action of mirror motion due to fluctuating radiation 
pressure on test masses
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Homodyne detection

Using conventional readout scheme, in case of detecting the 
ponderomotively vacuum fluctuations, the sensitivity is limited by the SQL
However, by using homodyne detection that is one of the quantum 
nondemolition devices, the sensitivity will be able to beat the SQL
» Optimization of the homodyne phase make it the best signal-to-noise ratio

×
Gravitational-wave signal

Signal

Noise

Noise

η

b１

Local oscillator

b2

Homodyne detection

a１

a2

Coherent state light

Vacuum fluctuations Ponderomotively squeezed
vacuum fluctuations

×



October 6, 2005　Australia-Italy Workshop on GW Detection Shihori Sakata 7

2. Interferometer to generate ponderomotively 
squeezed vacuum fluctuations

We calculate generation of the ponderomotive squeezing using 
Michelson interferometer and Fabry-Perot Michelson interferometer
» In the calculation conditions is that:

– Parameters
Laser power I0 =1W
Ω：Phase modulation frequency due to the mirror motion
Ω=1kHz

– Ω≪γ
γ : cavity pole
Arm length=10cm

– The sensitivity assumes to be limited by only the quantum noise
– Loss is zero

End mirror reflectivity: 1
– The sensitivity achieves the SQL, then beat the SQL by extracting the ponderomotive 

squeezing at the SQL
The homodyne phase is independent of frequency

» Reference: H.J.Kimble et al. Phys.Rev.D 65, 022002 (2002)
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Generation of ponderomotive squeezing 
using Michelson interferometer

In case of measuring the output quadrature field by means of the
conventional readout scheme, 
» The noise spectral density:
» where 

– The sensitivity achieves the SQL, where KMI = 1
mr： reduced mass, MBS: BS mass, ω0： laser angular frequency

how much mass of the end mirror is needed to achieve the SQL?
» The end mirror mass: 1 ng

BS mass: 500 g

» The reduced mass: 
– Experimentally generation of the ponderomotive squeezing is very difficult

» mr ∝I0　
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Generation of ponderomotive squeezing using 
Fabry-Perot Michelson interferometer

In case of measuring the output quadrature field by means of 
the conventional readout scheme,
» The noise spectral density:
» where

– mE∝  2

The sensitivity achieves the SQL, where KMI = 1
mr ： reduced mass，MF : front mirror mass
rF: amplitude reflectivity of front mirror, TE： intensity transitivity of end mirror

– Making finesses  ten times is the same effect as making end mass mE 100 times
：10000→ mE ：500g
 ：1000→ mE ：5g
 ：100→ mE ：50mg
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Experimental parameter

Discussion of experimental parameter
» The sensitivity achieves the SQL at ΩSQL= 1 kHz
» The noise spectral density:

– Finesses →1/10 times and mass m→1/100 times does not change the frequency Ω
Radiation pressure noise ∝1/m，∝ 
Shot noise∝ 1/

– By making the sensitivity worse,
achievement of the SQL is more possible  

Noises other than the quantum 
noise

» Suspension thermal noise
becomes worse

– Roughly ∝1/(m)1/2
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Beat the SQL

In case of measuring the output quadrature field by homodyne 
detection,
» The sensitivity is obtained by 
» At the SQL, the homodyne phase is optimized by

– Ponderomotive squeezing of 4dB ＠ΩSQL =1kHz
Squeezing factor：arcsinh(KFPMI /2)
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3. Summary

By extraction of the ponderomotive squeezing at the SQL, the 
sensitivity will beat the SQL
» Discussion of interferometer to generate the ponderomotive squeezing

– Michelson interferometer and Fabry-Perot Michelson interferometer
Loss is zero
The sensitivity assumes to be limited by only the quantum noise

– Finesses →10 times is equivalent to the mass m→100 times

» Experimental parameter
– The sensitivity achieves the SQL at ΩSQL=1kHz

Finesses →1/10 times and mass m→1/100 times does not change the frequency Ω
At the SQL, KFPMI = 1

– By making the sensitivity worse, achievement of the SQL is more possible
» At the SQL, the homodyne phase is optimized by

– Ponderomotive squeezing of 4 dB ＠ΩSQL =1kHz
– Homodyne phase η=45°

mE=800mg， =1000
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4.　Future plan

Design of end mirrors
» Design of suspension
» Thermal noise

Photo detection
» Homodyne detection or DC readout
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