The VIRGO Suspensions Control System

Alberto Gennai <u>The VIRGO Collaboration</u>

LIGO-G050527-00-Z

Superattenuator Local Controls Inertial Damping - Payload Control Global Control - Hierarchical Control - Lock Acquisition

Superattenuator

- Passive seismic isolation for optical elements
- 18 coil-magnet pair actuators distributed in 3 actuation point:
 - Filter zero (top stage)
 - Filter #7 Marionette
 - Recoil Mass Mirror
- Several sensors distributed along the whole chain:
 - 5 accelerometers on top stage
 - 14 position sensors
 - Payload coarse local position readout via CCD camera
 - Marionette and mirrors fine local position readout via optical levers
- Digital control system using DSP processors

Australia-Italy Workshop October 4-7 2005

Local Controls

 Feedback loops using measurements provided by local sensors

- Top stage inertial control (Inertial Damping)
 - Reduction of payload free motion
 - Always active
- Payload local control
 - Positioning along a local reference frame
 - Damping of payload modes
 - Active only with interferometer unlocked

Australia-Italy Workshop October 4-7 2005

Global Controls

- Feedback loops using measurements provided by photodiodes readout system
 - Active when interferometer is locked
 - Payloads longitudinal position control (Locking)
 - Payloads angular position control (Automatic Alignment)
 - Position error signals computed by a single processing unit and distributed to suspensions using fiber optics connections

Local Controls: Inertial Damping

- Inertial sensors (accelerometers):
 - DC-100 Hz bandwidth
 - Equivalent displacement sensitivity: 10⁻¹¹ m/sqrt(Hz)
- Displacement sensors LVDT-like:
 - Used for DC-0.1 Hz control
 - Sensitivity: 10⁻⁸ m/sqrt(Hz)
 - Linear range: ± 2 cm
- Coil magnet actuators:
 - Linear range: ± 2 cm
 - 0.5 N for 1 cm displacement
- Loop unity gain frequency:
 5 Hz
- Sampling rate:
 10 kHz

Australia-Italy Workshop October 4-7 2005

Inertial Damping (II)

- Complex transfer functions
- Diagonal dominance achieved using static sensing and driving matricies

I.D. Performances

1 um relative displacement 0.25 um/sec relative speed

I.D. Blending Filters

S

Australia-Italy Workshop October 4-7 2005

$$\frac{1}{2} \cdot H + l \cdot L = x - L \cdot x_0$$

9

Local Control: Payload

- Optical levers read both the mirror and the marionette
- Marionette position readout allows larger bandwidth control loops

Payload Local Control

Very complex dynamics

Local Controls: Filter #7

- 16 mHz "chain" mode gets excited when marionette horizontal coils are involved.
- Long decay time, large elongation.
- Impossible to damp it from top stage
- It can be damped acting on Filter #7

Filter #7 Damping

Global Control

- Required locking accuracy: $dL \approx 10^{-12} \text{ m}$
- Tidal strain over 3 km: $dL \approx 10^{-4}$ m
- Wide dynamic range to be covered without injecting actuation noise.
- Hierarchical Control
 - 3 actuation points

Marionette Transfer Functions

 θ_x

 θ_x

Lock Acquisition

- Coil-magnet pair actuators steering VIRGO optical elements need a wide dynamical range due to the big force impulse required for acquiring the lock of VIRGO optical cavities->
 - The DAC dynamical range (17.5 effective bits, 105 dB SNR) is not large enough.
- Solution
 - Use of 2 DAC channels
 - DAC #1 for lock acquisition when the large force impulse is required
 - DAC #2 for linear regime when low noise is required
 - Use of two different coil drivers for the two DAC channels
 - HighPower (up to 2A output current)
 - LowNoise (programmable max output current)

Australia-Italy Workshop October 4-7 2005

Hierarchical Control

Tide compensation (low frequency drifts) is applied on Superattenuator top stage

Marionetta and mirror actuation controls payload normal modes

Australia-Italy Workshop October 4-7 2005

Tide Control

Watt

Low frequency (< 10 mHz) part of z error signal is sent to top stage (IP) actuators

Marionette and Reference Mass – Mirror TF

- Acting on Marionette from Filter #7, Superattenuators modes are excited
- Acting on Mirror from Reference Mass only one longitudinal mode is excited.

October 4-7 2005

Force re-allocation

Marionette – Mirror Blending

- L(s) = 3rd order low pass filter, H(s) = 1-L(s)
- Force applied on mirror from reference mass is high-pass filtered while force applied on marionette from filter #7 is lowpass filtered

Australia-Italy Workshop October 4-7 2005

Force on Mirror

- Marionette/RM crossover @5 Hz
- After reallocation zCorr rms reduced by a factor 100

Conclusion

Superattenuator Controls

- Even if basic control strategies has not change during the last few years, feedback loops compensators are keeping on changinng to improve controls performances.
- Possibility to adapt compensator to specific states of the interferometer has shown to be a key feature. Re-allocation of forces along the chain allows easy lock acquisition and good performances in linear regime.
- Control strategies, expecially for lower stage, are continuosly upgraded.
- Powerful and flexible digital control system is a must. (See next talk)