#### The Threat of Parametric Instabilities in Advanced Laser Interferometer Gravitational Wave Detectors

Li Ju Chunnong Zhao Jerome Degallaix Slavomir Gras Pablo Barriga David Blair



THE UNIVERSITY OF Western Australia







# Contents

- Parametric instabilities
- Minefield for Advanced Detectors
- Suppression of instabilities
  - Thermal tuning
  - Q reduction
  - Feedback control
- Future work

When energy densities get high things go unstable...

- Braginsky et al predicted parametric instabilities can happen in advanced detectors
  - resonant scattering of photons with test mass phonons
  - acoustic gain like a laser gain medium

#### Photon-phonon scattering



#### Instabilities from photon-phonon scattering

- A test mass phonon can be **absorbed** by the photon, increasing the photon energy (damping);
- The photon can **emit** the phonon, decreasing the photon energy (potential acoustic instability).

### Schematic of Parametric Instability



#### **Instability Condition**



# Instability conditions

• High circulating power P

+

- High mechanical
- High optical mode Q

Mode shapes overlap (High overlap factor Λ)
Frequency coincidence—Δω small



#### Mode Structure



#### Example of acoustic and optical modes for Al2O3 AdvLIGO



Summing over diagrams: multiple Stokes modes can drive a single acoustic mode.

# Example



Mechanical mode shape (f<sub>m</sub>=28.34kHz)

#### Optical modes









 $\Lambda = 0.007$ R=1.17

Λ=0.019 R=3.63

 $\Lambda = 0.064$ R=11.81

 $\Lambda = 0.076$ R=13.35

## Parametric gain multiple modes contribution

- Many Stokes/anti-Stokes modes can interact with single mechanical modes
- Parametric gain is the **sum** of all the possible processes

$$R = \frac{2PQ_m}{McL\omega_m^2} \left(\sum_{i=1}^{\infty} \frac{Q_{1i}\Lambda_{1i}}{1 + \Delta\omega_{1i}^2 / \delta_{1i}^2} - \sum_{j=1}^{\infty} \frac{Q_{1aj}\Lambda_{1aj}}{1 + \Delta\omega_{1aj}^2 / \delta_{1aj}^2}\right) > 1$$

# Influence of PR Cavity



For  $\Delta \omega >>$  1Hz no recycling of HOM.

We calculate linewidths of HOMs from transmission +overlap loss of ideal modeshapes.



- Sapphire  $Q_m = 10^8$ , 5 unstable modes (per test mass)
- Fused silica  $Q_m(f)$ , 12 unstable modes (per test mass)

# Landmines! There is one at 2074!



#### **Instability Condition**



## Suppression of Parametric Instabilities

- Thermal tuning
- Mechanical Q-reduction
- Feedback control

# **Tuning Coefficients**

- HOM Frequency Depends on ROC
- For 2km ROC, typical ROC tuning dR/dT ~ 1m/K for FS, 10m/K for sapphire
- HOM frequency changes: df/dR ~ 10 Hz / m
- Acoustic mode spacing: ~ 40Hz in fused silica
- ROC uncertainty ~ 10m (?)
- •Change the curvature of mirror by heating
- •Detune the resonant coupling
- •How fast?
- •How much R reduction?

# ETM radius of curvature vs heating



# Thermal tuning without PR Cavity

#### **Fused silica**



#### Mode Structure for Advanced LIGO



If  $\Delta \omega - \omega_m$  < optical linewidth resonance condition may be obtained  $\Delta \omega = (n^*FSR - TEM_{mn})$  - frequency difference between the main and Stokes/anti-Stokes modes  $\omega_m$  -acoustic mode frequency,  $\delta$  - relaxation rate of TEM

#### Instability Ring-Up Time

Mechanical ring down time constant

•For R > 1, ring-up time constant is ~  $\tau_m/(R-1)$ 

Time to ring from thermal amplitude to cavity position bandwidth (10<sup>-14</sup>m to 10<sup>-9</sup> m) is

#### ~ 100-1000 sec.

•To prevent breaking of interferometer lock, cavities must be controlled within ~100 s or less

#### Thermal tuning time—sapphire is faster



## Suppress parametric instabilities

- Thermal tuning
- Q-reduction
- Feedback control

#### Parametric instability and Q factor of test masses



#### Applying surface loss to reduce mode Q-factor

It is possible to apply lossy coatings ( $\varphi$ ~10<sup>-4</sup>) on test mass to reduce the high order mode Q factors without degrading thermal noise (S. Gras poster)



# Parametric gain reduction



### Effect of localised losses on thermal noise

Side and Back



#### Noise increase 14% to achieve stability



## Suppress parametric instabilities

- Thermal tuning
- Q-reduction
- Feedback control
  - Problem: if test masses are similar but not identical instabilities will appear as quadruplets and individual test mass will not be identified unless well mode mapped before installation

# Feedback control

- Tranquiliser cavity (short external cavity)
  - Complex
- Direct force feedback to test masses
  - Capacitive local control or radiation pressure
  - Difficulties in distinguishing doublets/quadruplets
- Re-injection of phase shifted HOM
  - Needs external optics only
  - Multiple modes



## **Gingin HOPF Prediction**

- ACIGA Gingin high optical power facility 80m cavity should observe parametric instability effect with 10W power
- Expect to start experiment this year (Zhao's talk)

# Conclusions

- Parametric instabilities are inevitable.
- FEM modeling accuracy/test masses uncertainties precise prediction impossible
- Thermal tuning can minimise instabilities but can not completely eliminate instabilities.
   (Zhao, *et al*, PRL, 94, 121102 (2005))
- Thermal tuning may be too slow in fused silica.
- Sapphire ETM gives fast thermal control and reduces total unstable modes (from ~64 to 43 (average))
   (3 papers submitted to LSC review)
- Instability may be actively controlled by various schemes
- Gingin HOPF is an ideal test bed for these schemes.