

Effect of wire stiffness on pitch modes and correction thereof

Mark Barton

E2E Meeting 10/6/05 SUS Meeting 10/11/05

G050496-00-D

LIGO SUS Design Philosophy/Methodology

- Quad/triple pendulum has 24/18 rigid body normal modes
 - » Want all frequencies as low as possible
 - All but highest frequency vertical and roll modes in range \approx 0.4 to \approx 4 Hz.
 - » Want anti-node at top mass for good local control
- Initial design uses mostly Matlab software by Calum Torrie et al. with improved stiffness matrix elements by Mark Barton
 - » Wire stiffness is neglected
 - » Inaccurate for fundamental pitch mode

Fundamental Pitch Mode

Sn

Su

ix.

S1

tx

d0_(

----d2--d3 ♀

d4

UPPER MASS, Mn

UPPER MASS, M1

PENULTIMATE MASS. M2

TEST MASS

MIRROR M3

- Only 2 top wires instead of 4 => sn=0
- Fundamental pitch mode has masses moving in phase, ganged together by lower pairs of wires
- For ideally flexible wire as in Matlab model, frequency is set by gravitational restoring torque (weighted sum of d's) and sum of MOIs:

```
kk = (
    (nn+n1+n2+n3) g dn
    +(n1+n2+n3) g (dn+d0)
    +(n2+n3) g (d1+d2) II = Iny+I1y+I2y+I3y
    +n3 g (d3+d4)
)
```

ff = Sqrt[kk/II]/2/Pi

Wire Stiffness -Simple Pendulum Case

G. Cagnoli et al., Physics Letters A 272 (2000): 39 – 45

The wire can be modeled as an elastic beam under tension (x=longitudinal, y=displacement, T=tension, Y=Young's modulus, I=moment of area, rho=density): μ1y"" – Ty" = ρ ∂²y/∂t²

LIGO

- At low frequency, $y(x) = \frac{F}{T\lambda} [e^{-\lambda x} + \lambda x 1]$ $\lambda = \sqrt{T/Y_0 I}$
- Pendulum frequency increases due to two effects
 - » Wire is effectively shorter by 0.5/lambda => extra gravitational restoring force
 - » Wire is stiff => elastic restoring force equivalent to another 0.5/ lambda of length change

Old Application To Quad

- For the quad pendulum, the d's from the Matlab model were "corrected" by amounts of 1/lambda
- But 1/lambda is typically rather larger than the raw d's:

I/lambda in mm {4. 97277, 3. 26511, 2. 88802, 0. 951584} for ETM prototype, T040214-01 cf. all d's = 1 mm

- If the wire stiffness effect is only slightly less than assumed, the pendulum will be unstable!
- As-built pendulum was unstable(!) is this the problem?

Simple Pendulum With Pitch DOF

- Does a pitch mode need the same correction as a pendulum mode?
- A simple pendulum model was created to check.
- Yes, the pitch flexure correction is exactly 1/lambda.

Four-Wire Simple Pendulum

- How about a four-wire pendulum?
- The pitch frequency depends mostly on the wire elasticity, not gravity.
- Yet, the pitch flexure correction is still 1/lambda except where the pitch and pendulum frequencies are nearly equal.

Four-Wire Two-Mass Pendulum

- How about two masses both free to pitch (the upper one hinged)?
- Yes, the flexure correction is still almost exactly 1/lambda (if applied at both top and bottom of each wire).

Diagonal Wires

- How about wires further apart in transverse at the top than at the bottom?
- Computation is too slow for a plot to be feasible, but spot checks suggest flexure correction is

Cos[theta]/lambda

- if lambda is still calculated in terms of the tension in the wire.
- This is actually a factor of Cos[theta]^(3/2) smaller than what was used for the quad because the vertical load was used instead of the tension.

Experimental Check

- A two-wire LIGO-I style pendulum was constructed in the lab to check.
- Expected frequency with flexible wire: 0.325i Hz (unstable)
- Expected frequency with stiff wire: 0.359 Hz
- Measured frequency: 0.422 Hz
- Fair agreement.

Check With Quad Model

- Used parameters from ETM Quad Prototype Design (T040214-01) in Mark Barton's Mathematica quad model.
- Corrected d's using new flexure theory.
- Mathematica "Stage2" results (i.e., with wire stiffness)agree very closely with Matlab results (with neither wires stiffness nor correction thereof).

N	f	type	
1	0.379244	pitch3	pitch2
2	0.443433	pitch3	pitch2
3	0.672038	z3	z2
4	0.997526	pitchO	x2
5	1.27192	pitchO	pitch1
6	1.6833	pitchO	pitch2
7	2.00385	xO	x1
8	2.52876	zO	z1
9	2.95722	pitch1	
10	3.42948	x1	xO
11	4.22801	z1	zO
12	8.83338	z2	z3

longpitch1: [0.3797 0.4408 0.9898 1.2736] longpitch2: [1.6838 1.9753 2.9580 3.3722] vertical: [0.6602 2.4795 4.1289 8.8326]

