

The Mesa Beam Update

Juri Agresti¹, Erika D'Ambrosio¹, Riccardo DeSalvo¹, Danièle Forest², Patrick Ganau², Bernard Lagrange², Jean-Marie Mackowski², Christophe Michel², *John Miller*^{1,3}, Jean-Luc Montorio², Nazario Morgado², Laurent Pinard², Alban Remillieux², Barbara Simoni¹,

Marco Tarallo¹, Phil Willems¹

- 1. Caltech/ LIGO
- 2. LMA Lyon/EGO
- 3. University of Glasgow

Overview

- Introduction
- Results
 - » HOM
 - » Fundamental mode
- Tilt sensitivty

Introduction

$$S_h \propto \frac{1}{w^n}$$

$$\ell_{clip} = \exp\left[-2\frac{m^2}{w^2}\right]$$

- Detectors limited by fundamental thermal noise
- Spectral density scales as 1/wⁿ (different n for each type of noise)
- Diffraction prevent dramatically increasing beam size

Introduction

 Gaussian beams sample a small portion of mirror's

surface

Mesa Beam

 Optimisation produces the mesa beam

$$U(D,r) = \int_{C_D} \exp \left[\frac{-[(x-x_0)^2 + (y-y_0)^2][1+i]}{2b} \right] dx_0 dy_0$$

LIGO Cavity • 7.32 m folded cavity Rigid structure Flat folding mirror Suspended in custom vacuum tank Flat input MH mirror mirror 2x 3.5 m **INVAR** rod Vacuum pipe LIGO-G050481-00-R LIGO R&D 6

Results

- We have been able to lock to higher order modes
- These modes exhibit good agreement with theory

Results - HOM

Diffraction around beam baffle eliminated

Gaussian?

Modes resemble HG and LG sets

LG₁₀ fit

 MH_{10} fit

The Fundamental?

- Alignment is taxing
- Long periods were spent aligning input optics and cavity mirrors

4µrad tilt

Improving Alignment

 The reference during alignment was changed from the intensity profile to the transverse mode spectrum

The First Mesa Beam

Non-Linear Fit X

Non-Linear Fit Y

$$W_{theory} = 6.68mm$$

$$w_{experiment} = 7.60 \pm 1.19 mm$$

How Was This Achieved?

- We have reinforced flexible mirrors with aluminium rings
- Thicker substrates have been ordered

How Was This Achieved?

• Improved atmospheric isolation

Better stability 'in lock'

How Was This Achieved?

 More power in the fundamental mode Improved spectrum

Alignment

Best Mesa Beam

•
$$Rsq = 0.996$$

•
$$Rsq = 0.992$$

Best Mesa Beam

LIGO-G050481-00-R

LIGO R&D

Tilts of Spherical Mirrors

 Tilts of spherical mirrors translate optical axis

Tilt Sensitvity

- Controllability of beam is key
- Decided to first investigate tilt sensitivity
- Tilt MH mirror about a known axis

Profiles

Tilting the mesa beam - Comparison to theory. Legend shows tilt relative in µrad

Profiles along

900

Excuses

 Lack of temporal stability

» vacuum?

Stiction

PZTs are bad

Summary

- We are able to produce acceptable flat-topped beams with imperfect optics
- We have begun to make a quantitative analysis of mesa beam
 - » Beam size appears correct
 - » Tilt sensitivity shows correct trends

Further Work With This Set Up

- Improve profile using new flat mirrors
- Repeatability/ stability vacuum operations
- Complete tilt sensitivity measurements
- Test other two MH mirrors mirror figure error tolerances
- Long term design and build half of a nearly concentric MH Cavity

Grazie

- Riccardo DeSalvo
- Phil Willems
- Mike Smith
- GariLynn Billingsley

- Marco Tarallo
- Juri Agresti
- Chiara Vanni