Adaptive Mode matching for advanced LIGO

Volker Quetschke, Joseph Gleason, Christina Leidel, Michelle Snider, Malik Rakhmanov, Liang Zhang,

Guido Mueller, David Reitze, David Tanner

Department of Physics

 University of Florida
DCC LIGO-G050422-00-Z

UNIVERSITY OF
FLORIDA

LSC meeting, August 16, 2005 LIGO Hanford Observatory

Motivation

Interferometric gravitational wave detectors are basically interferometers with suspended components that are operated in vacuum.

- Objective:
- Actuator to change the modal parameters of a Gaussian beam without moving parts.
- Requirements:
- Touch free
- Vacuum compatible (UHV)
- Stationary (no movable parts)
- Solution:
- Telescope with lenses with variable focal lengths

Adjustable lenses

- Use thermal lensing effect
- Use dichroic material
- high absorption for heating beam
- low absorption for probe beam
- Schott OG515 is highly transmissive for 1064 nm and strongly absorbing for 514 nm .
- Two laser setup
- Argon-Ion laser provides heating beam to actuate the lens
- Nd:YAG laser probes the created effect

Heating beam

Probe beam

Calculate temperature profile in substrate

 faces and $T(r, z)=T_{0}$ on the rim (Substrate in heat sink).

$$
\nabla^{2} T(r, z)=-\frac{2 \alpha P}{\pi K w^{2}} \exp \left(-2 \frac{r^{2}}{w^{2}}\right) \exp (-\alpha z)
$$

Analytical solution exists:

$$
\begin{aligned}
& T(r, z)=-\sum_{n=1}^{\infty} \frac{4 \alpha P}{\pi K R^{2} w^{2}} \frac{\int_{0}^{R} \exp \left(-\frac{2 r^{\prime 2}}{w^{2}}\right) J_{0}\left(\frac{k_{n} r^{\prime}}{R}\right) r^{\prime} d r^{\prime}}{\left(J_{0}\left(k_{n}\right)\right)^{2}} J_{0}\left(k_{n} \frac{r}{R}\right) f_{n}(z)+T_{0} \\
& f_{n}(z)=\frac{1}{\alpha^{2}-\left(\frac{k_{n}}{R}\right)^{2}}\left\{\frac{\alpha R}{k_{n}}\left(\frac{\left.e^{\left(\left(\frac{k_{n}}{R}-\alpha\right) L\right.}\right)}{k^{\left(\frac{2 k_{n} L}{R}\right)}-1} e^{\left(\frac{k_{k}, z}{R}\right)}-\frac{e^{\left(-\left(\frac{k_{n}}{R}+\alpha\right) L\right.}-1}{e^{-\left(\frac{2 k_{k} L}{R}\right)}-1} e^{\left(\frac{k_{k^{\prime}} z}{R}\right)}\right)\right\}
\end{aligned}
$$

3D - Temperature profile

- For 4 W heating beam with 3.6 mm radius

Calculated on grid with 460 radial and 1000 axial steps

Evaluating the effects of the temperature profile

- Change of optical path length

$$
O P L(r)=\left(\frac{\mathrm{d} n}{\mathrm{~d} T}+\alpha_{T}(n-1)\right) \int_{0}^{L} \Delta T(r, z) \mathrm{dz} \quad \text { GRIN lens }
$$

- Propagate a Gaussian beam with this OPL

$$
\begin{aligned}
u(r, z) & =u_{\text {probe }}(r, z) \exp (-i k O P L(r)) \\
& =u_{\text {probe }}(r, z) \exp \left(-i k\left(O P L(0)+O P L^{\prime \prime}(0) \frac{r^{2}}{2}+O\left(r^{4}\right)\right)\right)
\end{aligned}
$$

- Compare with propagation through a thin lens

$$
\begin{aligned}
& u(r, z)=u_{\text {probe }}(r, z) \exp \left(i k \frac{r^{2}}{2} \frac{1}{f}\right) \\
& \rightarrow \quad f=\frac{-1}{O P L^{\prime \prime}} \quad \text { focal length }
\end{aligned}
$$

Calculated optical path length

- Comparison with "ideal" thin lens ($\mathrm{f}=1.88 \mathrm{~m}$)

Measurement setup - beam analysis

Changes in Gaussian Mode

Corresponding focal power changes

- Focal power - diopters

Measurement setup - mode quality

- Use optical cavity as mode reference
- Look for introduced aberrations

Higher order mode content (normalized to TEM_{00})

Conclusion

- Excellent agreement with theoretical model
- Technique is "touch free" and vacuum compatible
- An aberration free lens can be created if:
- The amount of heat is kept below the structural limit
- The ratio of heating beam to probe beam radii is sufficiently large

Future work

- Use different absorbing material
- CO2 laser and fused silica
- Start beam shaping experiments

