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Motivation

Objective:
– Actuator to change the modal parameters of a Gaussian 

beam without moving parts.

Requirements:
– Touch free 
– Vacuum compatible (UHV)
– Stationary (no movable parts)

Solution:
– Telescope with lenses with variable focal lengths

Interferometric gravitational wave detectors 
are basically interferometers with suspended 
components that are operated in vacuum.
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Adjustable lenses

Use thermal lensing effect
Use dichroic material
– high absorption for heating beam
– low absorption for probe beam

Schott OG515 is highly 
transmissive for 1064nm and 
strongly absorbing for 514 nm.
Two laser setup
– Argon-Ion laser provides heating 

beam to actuate the lens
– Nd:YAG laser probes the created 

effect

Heating beam

Probe beam

OG515
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Calculate temperature profile in substrate

Solve thermal diffusion equation assuming           on the 
faces and T(r,z)=T

0
 on the rim (Substrate in heat sink).

Analytical solution exists:
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3D - Temperature profile

For 4 W heating beam with 3.6 mm radius

Calculated on grid with 460 radial and 1000 axial steps
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Evaluating the effects of the
temperature profile

Change of optical path length
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Propagate a Gaussian beam with this OPL

Compare with propagation through a thin lens

→                                  focal length



DCC LIGO-G050422-00-Z 7

Calculated optical path length

Comparison with “ideal” thin lens (f = 1.88 m)
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Measurement setup - beam analysis
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Changes in Gaussian Mode

DCC LIGO-G050422-00-Z
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Corresponding focal power changes

Focal power - diopters
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Measurement setup - mode quality

Use optical cavity as mode reference
Look for introduced aberrations
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Higher order mode content (normalized to TEM
00

)

 fixed mode-
 matching lenses

 re-optimized mode- 
 matching lenses

 Bull's eye (Laguerre-Gauss) 

 Sum of other modes 

 Hermite-Gauss 01/10 

 Theoretical prediction 
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Conclusion

Excellent agreement with theoretical model

Technique is “touch free” and vacuum compatible

An aberration free lens can be created if:
– The amount of heat is kept below the structural limit
– The ratio of heating beam to probe beam radii is

sufficiently large
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Future work

Use different absorbing material
– CO2 laser and fused silica

Start beam shaping experiments


