

Use of h[t] in the stochastic GW background search

Philip Charlton (presented by A. Lazzarini) LSC Meeting, LIGO Hanford Observatory 15 August 2005

Use of h[t] in stochastic searches

- S3 performed exploratory, sanity check analyses
 - » Targeted at understanding interferometer non-stationarity
 - 60s vs. 16s vs. 4s vs. 1s results were consistent within 0.07 σ
 - » Did not use h[t] further in analysis
- S4 evaluation of consistency between h[t]->h[f] and AS_Q[f]*R[f] is in progress
 - » First step: compare RMS for h[t] and AS_Q[f]*R[f] in band used for stochastic search
 - » Look for epochs of inconsistency
 - » Systematics, etc.
 - » Generate h[f] from h[t] in a manner identical to AS_Q[f]*R[f] (without applying a calibration):
 - Downsample h(t) to 1024 Hz
 - High-pass filter above $f_1 = 70 \text{ Hz}$
 - Apply the window function to h(t)
 - Pad with zeroes
 - Take the DFT
 - Coarse grain down to the specified frequency spacing (0.25 Hz in this case)

Comparison

RMS in SGWB band:

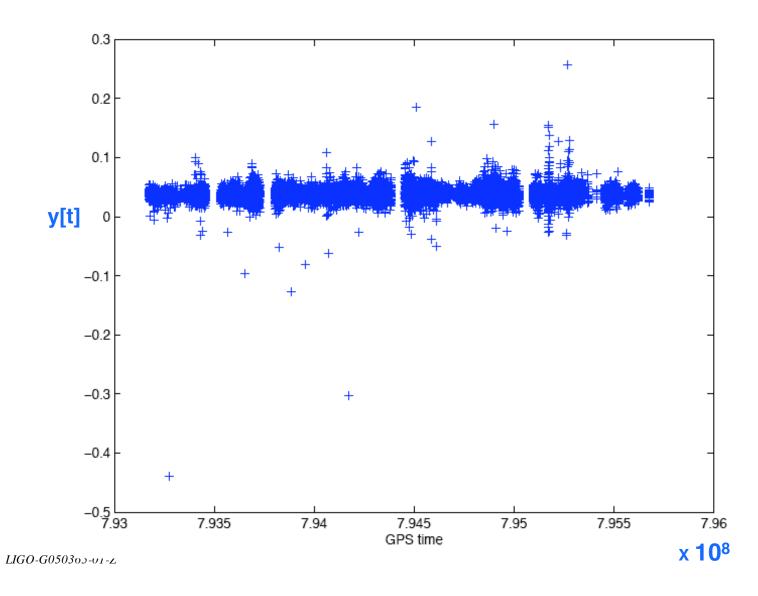
$$ho_i \equiv \sqrt{\int_{f_1}^{f_2} df |h_i[f]|^2}$$

» $f_1 = 70 \text{ Hz}$; $f_2 = 220 \text{ Hz}$;

• Define relative difference between $\rho_1(AS_Q(f)^*R(f))$ and $\rho_2(h[f])$:

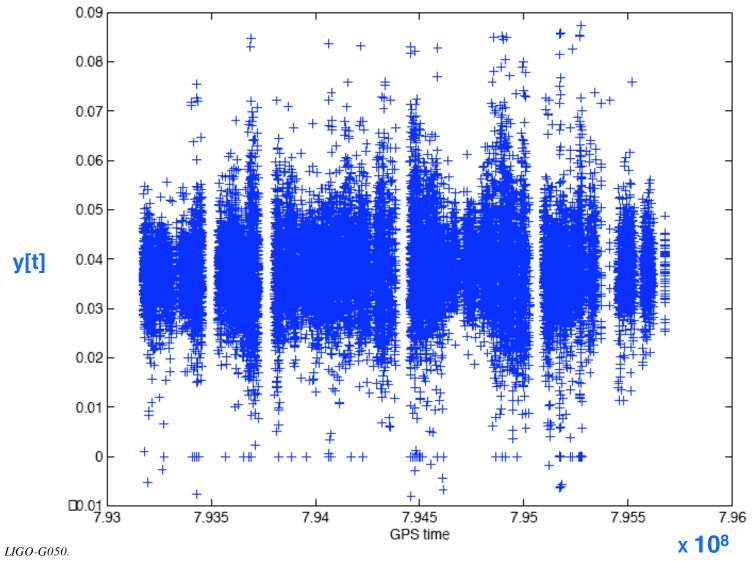
$$y = 2\frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$$

Generate y[t] for 60s segments used in stochastic analysis


Results of work in progress

- H1:
 - \Rightarrow <y[t]> ~ 0.038 (bias)
 - $\sigma_y \sim 0.010$
- H2:
 - > < y[t] > ~ 0.034 (bias)
 - $\sigma_{y} \sim 0.011$
- L1:
 - \Rightarrow <y[t]> ~ 0.00098 (bias)
 - $> \sigma_y \sim 0.00077$
- Source of H1, H2 biases still being explored
- May be related to band-limiting filters used in h[t] -> h[f]
- A number of outliers observed
 - » Largest outliers traced to calibration line dropouts

H1 h[t] comparisons minute-by-minute over S4



H1 h[t] comparison with largest outliers removed

Histogram of y for H1 -- S4

Further work

- Need to explore source of bias in H1, H2
- Consider amplitude differences

$$y'\equiv 2rac{\sqrt{\int_{f_1}^{f_2}df|h_1[f]-h_2[f]|^2}}{
ho_1+
ho_2}$$

- Once issues are resolved, plan to use for analyses
 - » Removes constraint to 60s stride in analysis
 - » Allows tracking of higher frequency calibration fluctuations