

OPTIMIZED COATINGS

Juri Agresti, Giuseppe Castaldi, Riccardo de Salvo, Vincenzo Galdi, Vincenzo Pierro, → Innocenzo M. Pinto * LIGO Lab / Caltech TWG / University of Sannio at Benevento

Rationale

- •Current mirror design: *quarter-wavelength* (QWL) alternating SiO₂ and Ta₂O₅ layers.
- •Yields *largest reflectance* among all stacked-doublet designs for any *fixed* no. of layers (or equivalently, *smallest* no. of layers at any *fixed reflectance*).
- •Coating (structural) noise *dominates thermal-noise budget* in key spectral range.
- •QWL coating does *not* yield mimimum noise for a prescribed reflectivity, hence *not optimal*.

LIGO G-050363-00-R Coating Design Optimization: Status & Work Plan (2005-2006)

Status/Directions

Genetic optimization (running)

The choice, for highest design flexibility and insight;

Stacked-doublet (completed)

Most obvious generalization of stacked quarter wavelength;

Regular non-periodic (just started) getting closer to the "perfect mirror";

• On top of this: *new materials* (e.g., JMM TiO₂-doped Tantala)

Funding Proposal

INFN – COAT (2006 - PI Innocenzo M. Pinto)

Goal: prototyping four GA-optimized mirrors to be tested at CALTECH TNI.

Time-span: 1 year (2006).

Participants: TWG (algorithm and code), CALTECH LIGO-Lab (substrates & TNI), LMA Lyon, FR (prototyping; bare costs).

Partnerships: ILIAS-Strega (S. Rowan/J. Hough), TAMA (Tsubono K.), VIRGO (F. Vetrano).

Requested budget: 50 KEU (60 K\$).

Genetic Optimization

Nice Features

Multiple, *heterogeneous* mixed continuous/discrete constraints; Multi-objective and/or best tradeoff optimization; Robust.

Available options include: -structural/rheology-related constraints; -multiple-wavelength operation; -several (> 2) materials, etc....

Educated ignorance attitude (almost *no a-priori assumption* on structure of sought solution - will shed light on it !);

Effective & well established (e.g. microwave antenna and filter design)...

Status: PIKAIA-based Code-kernel developed.

LIGO G-050363-00-R Genetic Algos in a Nutshell

- -Problem unknowns \equiv genes;
- -Point in search space \equiv *chromosome*;
- -Set of points in search space \equiv *population*;
- -Evolve *random* initial population according to an *evolutionary schedule*

Most obvious generalization of current stacked- $\lambda/4$ -design.

•Coating reflectivity is a monotonic (increasing) function of Bloch characteristic exponent (BCE) of transmission matrix of basic doublet (true for any *truncated-periodic*);

•Coating noise is closely modeled by a simple (linear) law: total (physical) thicknesses

$$\nu = \mathbf{C}(\Delta_{\text{Tantala}}^{+} \gamma^{-1} \Delta_{\text{Silica}}^{-})$$

 γ related to Young moduli, Poisson ratios & loss angles of both substrate & coating materials. In view of present measurement uncertainties γ can be anything between 10 and 30.

Stacked Doublet Optimization

Stacked Doublet Optimization: Approximation # 1

LIGO G-050363-00-R

LIGO

BCE contour lines very thin: no sensible difference between exact and approximate $(z_T+z_S=1/2)$ optimization

Stacked Doublet Optimization: Approximation # 2

...both absorbed by large by uncertainty in γ

LIGO G-050363-00-R Constructing Tradeoff Curves

- -Assign number N of doublets;
- -Assign noise upper-bound noise for whole coating;
- -Compute corresponding upper-bound for single doublet;
- -Determine z_s and z_T so as to maximize BCE;
- under tha above noise constraint;
- -Compute terminated N-doublet reflection coefficient.

Status: Transmissivity vs. Noise Tradeoff Curves Drawn

Stacked Doublet Optimization

LIGO Quarter Wavelength (yellow bullets) vs. Optimized (grey bullets) Stacked Doublet Design. Transmissivity 8.3 ppm. Different SiO₂/Ta₂O₅ loss ratios.

LIGO G-050363-00-R

LIGO Quarter Wavelength (yellow bullets) vs. Optimized (grey bullets) Stacked Doublet Design. Transmissivity 1.12 ppm. Different SiO₂/Ta₂O₅ loss ratios.

LIGO G-050363-00-R

LIGO G-050363-00-R GA Engineered Prototype (after 10⁵ generations)

vs. nearest-neighbour quarter-wavelengths (QWL)

	QWL-1	Genetic	QWL-2
N (cap included)	36	44	28
$1- \Gamma ^2$ ppm	16.20	14.91	235.46
L(Ta ₂ O ₅) nm	2359.43	1815.61	1835.11
L(SiO ₂) nm	3479.98	5217.4	2747.35
L _{tot} nm	5839.41	7033.01	4582.46

LIGO Stacked Doublets: Lesson from GA: Tweak End Layers to Improve Reflectivity !

LIGO G-050363-00-R

(z₁ = 0.0943, z_N =0.0437, in units of $\lambda/2$)

reflectance increased by ~ 10%, noise increased by ~ 1%

Regular Non-Periodic Coatings

LIGO G-050363-00-R

LIGO

Fractal (e.g., Cantor);

Two main sub-classes:

Substitutional (e.g. Fibonacci);

Goal: large bandwidths (in frequency *and* wavenumber) [e.g., Optics Lett. 23 (1998) 1573];

Background: applications in antenna array synthesis [e.g., IEEE Trans. AP-53 (2005) 635]

Status: just started

