

Status of the LIGO Detectors

6th EDOARDO AMALDI CONFERENCE, Okinawa, June 21, 2005 Daniel Sigg, LIGO Hanford Observatory

Arial View of the LIGO Sites

LIGO Hanford Observatory

LIGO Livingston Observatory

Time Line

Major Achievements Since Last Amaldi

- An order of magnitude improvement in sensitivity (at 150Hz)
- All 3 interferometers within a factor of 2 of design
- Hydraulic external pre-isolator at Livingston
 - Success! Allows 24 hour operation
- Thermal compensation system
- Output Mode Cleaner Test
 - Some good features but "large" acoustic sensitivity
- S1/S2 analysis published, S3 analysis in progress, S4 run completed

The 4th Science Run

S4 Range Histogram 8000 □ Dates (2005): H1H2 > Start: 22 Feb L1> Stop: 23 Mar 6000 Duty cycle: ➤ H1: 80% $(\underset{N}{\overset{(\text{IIIII})}{1}} 4000$ ► L1: 74% ➢ H2: 81% > Triple 2000 coincidence: 57% 0 3 4 5 7 8 0 6 Range (Mpc) G050300-00-D

Strain Sensitivities for the LIGO Interferometers

Best Performance for S4 LIGO-G050230-02-E

Results from the 1st/2nd Science Run

□ Binary inspirals (S2):

- Neutron star binary coalescence: range up to 1.5 Mpc, rate ≤ 47/y/MW (90% CL)
- > Black hole coalescence (0.2-1M_☉) in Galactic halo: rate \leq 63/y/MW (90% CL)

Pulsars (S2):

- Limits on 28 pulsars
- Upper limits on h as low as 2×10⁻²⁴ (95% CL) and as low as 5×10⁻⁶ on the eccentricity
- Stochastic background (S1):
 - > Energy limit as fraction of closure density: $h_{100}^2 \Omega_0 \le 23 \pm 4.6$ (90% CL)
 - > **PRELIMINARY** S2: $h_{100}^2 \Omega_0 \le 0.018 + 0.007 0.003 (90\% CL)$

□ Burst (S2):

- > Sensitivity: $h_{rss} \sim 10^{-20} 10^{-19} / \sqrt{Hz}$, rate ≤ 0.26/day (90% CL)
- > GRB030329: $h_{rss} ≤ 6 \times 10^{-21} / \sqrt{Hz}$

Hydraulic External Pre-Isolator

- The payload is supported by large coil springs, and actuated by quiet, high force hydraulic bridges.
- Vibration reduction is obtained by actively following inertial sensor signals from payload-mounted seismometers and by canceling floor vibrations.

X-arm length disturbance, noisy afternoon

With HEPI 10⁻⁵ in use, we 10⁻⁶ expect the ASD (m/s/Hz^{1/2}) 0, 0, 0, LLO detector to work on a typical noisy day, with at least 10⁻⁹ a factor of 2 headroom.

LIGO I

Thermal Compensation System

 Cold power recycling cavity is unstable: poor buildup and mode shape for the RF sidebands
Require 10's of mW absorbed by 1µm beam

G050300-00-D

Sideband Images as Function of Thermal Heating

120 mW

LIGO

150 mW

180 mW

Input beam

Sideband Imbalance

Other Commissioning Highlights

- Bull's eye wave front sensor to servo the thermal compensation system
- □ Auto-alignment system at full bandwidth
- □ Low noise oscillator for main modulation
- □ Low noise digital-to-analog converters
- Acoustic mitigation and isolation improved
- Reworked common mode feedback path
- □ Better control on auxiliary degrees-of-freedom
- □ EMI improvements at LLO

Summary

All LIGO interferometers are within a factor of 2 of design sensitivity over a broad range of frequencies

- > Thermal compensation essential to reach this sensitivity
- Active pre-isolator essential at LLO to lock during work days
- For sources like binary neutron star coalescence we can see beyond our own galaxy!
- □ Join Einstein@home (einstein.phys.uwm.edu)