

LIGO Interferometry

CLEO/QELS Joint Symposium on Gravitational Wave Detection, Baltimore, May 24, 2005 Daniel Sigg

LIGO

Antenna Pattern

Seismic Isolation

LIGO Suspensions

Some Requirements

- □ Sensitivity: ~10⁻¹⁹ m/ \sqrt{Hz} at 150 Hz
- □ Controller range: ~100 µm (tides)
- □ Control of diff. arm length: $\leq 10^{-13}$ m rms
- □ Laser intensity noise: $\leq 10^{-7}$ / \sqrt{Hz} at 150 Hz
- □ Frequency noise: $\leq 3 \times 10^{-7}$ Hz/ \sqrt{Hz} at 150 Hz
- □ Angular Control: $\leq 10^{-8}$ rad rms
- □ Input beam jitter: ≤4×10⁻⁹ rad/√Hz at 150 Hz

Length Sensing and Control

- Separate common and differential mode
 - Diff. arm
 - Michelson
 - Common arm
 - PR cavity
- □ Sensors
 - Anti-symmetric port
 - In reflection
 - PR cavity sample

LIGO I

The Auto-Alignment System

- Optical levers for damping suspension & stack modes
- Wavefront RF sensors for 10 angular dofs
- Quadrant detectors for beam positions on ends
- Video analysis of beam splitter image for input beam position

Sideband Images as Function of Thermal Heating

120 mW

LIGO

150 mW

180 mW

Input beam

Time Line

The 4th Science Run

S4 Range Histogram 8000 □ Dates (2005): H1H2 > Start: 22 Feb L1> Stop: 23 Mar 6000 Duty cycle: ➤ H1: 80% $(\underset{N}{\overset{(\text{IIII})}{1}} 4000$ ► L1: 74% ➢ H2: 81% > Triple 2000 coincidence: 57% 0 3 4 5 7 8 0 6 Range (Mpc) G050253-00-D

Results from the 1st/2nd Science Run

□ Binary inspirals (S2):

- Neutron star binary coalescence: range up to 1.5 Mpc, rate ≤ 47/y/MW (90% CL)
- ▶ Black hole coalescence $(0.2-1M_{\odot})$ in Galactic halo: rate ≤ 63/y/MW (90% CL)
- □ Pulsars (S2):
 - Limits on 28 pulsars
 - Upper limits on h as low as 2×10⁻²⁴ (95% CL) and as low as 5×10⁻⁶ on the eccentricity
- □ Stochastic background (S1):
 - ► Energy limit as fraction of closure density: $h_{100}^2 \Omega_0 \le 23 \pm 4.6$ (90% CL)
 - **▶ PRELIMINARY** S2: $h_{100}^2 \Omega_0 \le 0.018 + 0.007 0.003$ (90% CL)
- □ Burst (S2):
 - Sensitivity: $h_{rss} \sim 10^{-20} 10^{-19} / \sqrt{Hz}$, rate $\leq 0.26/day$ (90% CL)
 - ≻ GRB030329: $h_{rss} \le 6 \times 10^{-21} / \sqrt{Hz}$

Summary

- Sophisticated feedback compensation networks are essential in running a modern gravitational-wave interferometer
- All LIGO interferometers are within a factor of 2 of design sensitivity over a broad range of frequencies
- For sources like binary neutron star coalescence we can see beyond our own galaxy!
- □ Join Einstein@home (einstein.phys.uwm.edu)