

A Waveform Consistency Test for Binary Inspirals using LIGO data

Andres C. Rodriguez Gabriela González (Louisiana State University)

Peter Shawhan (LIGO | Caltech)

Evan Oshsner (University of Maryland)

LSC Inspiral Analysis Working Group LIGO-G050236-00-Z

American Physical Society April Meeting 4.16.05

LIGO Observatories

HANFORD

Hanford: two interferometers in same vacuum envelope (4km(H1), 2km(H2))

IVINGSTOP

Livingston: one interferometer (4km(L1))

American Physical Society April Meeting

Template based Matched Filtering

- Data stream searched using matched filtering between data & template waveform.
 s(t) = n(t) + h(t)
- Transform data to frequency domain : $\tilde{s}(f)$
- Calculate template in frequency domain: ĥ(f)

$$z(t) = 4 \int_{0}^{\infty} \frac{\widetilde{s}(f) \ \widetilde{h}^{*}(f)}{S_{h}(|f|)} \ e^{2\pi i f t} \ df$$

Template based Matched Filtering

 $\rho = |z|/\sigma$ • Signal to Noise (ρ) :

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

• χ^2 :

LIGO Template based Matched Filtering - Thresholds

• Signal to Noise (ρ): ρ > threshold (ρ^*)

• So if $\rho > \rho^*$ and $r^2 < r^{2^*}$ --> inspiral "trigger"

Simulated Inspiral (Injection)

time (s) to inferred coalescence

2

2

Injection vs. Trigger

time (s) to inferred coalescence

r²

Injection vs. Trigger

Injection

time (s) to inferred coalescence

The Test

- Use the r² time series as a method to search for excess noise
- Impose a "looser" r² threshold than the search employs
 - » Count the number of time samples above a given threshold in a time interval *before* inferred coalescence
 » Count the number of threshold crossings
- Time interval "window" chosen to be 2 seconds
- Do my triggers behave like software, hardware injections?
 » yes ->> keep
 » no ->> veto

ho^2 , r^2 distribution

ρ^2 , r^2 distribution

Injection vs. Trigger

LIGO Preliminary Results for H1 Injections + Playground Data

American Physical Society April Meeting

LIGO Preliminary Results for H1 Injections + Playground Data

American Physical Society April Meeting

LIGO Preliminary Results: H1 Injections + Playground Data

American Physical Society April Meeting

Summary and Plans

- Preliminary testing r^2 thresholds set to 6, 8, & 10.
- The test would be able to eliminate many of our loudest false triggers --> reduces false alarm rate.
- Additional tuning using S3 Hardware Injections and testing on S3 playground data from L1,H2.
- Will be incorporated into S3, S4 BNS search, and future online analysis.