

Astronomical Goals of LIGO

Dennis Ugolini Trinity University April 15, 2005

- The LIGO project
- Astronomical sources
 - » Binary inspirals
 - » Burst sources
 - » Periodic sources
 - » Stochastic backgrounds
- Status and future plans

Ninth Texas-Mexico Conference on Astrophysics, 4/15/05

The LIGO Project

LIGO: Laser Interferometer Gravitational-Wave Observatory

- US project to build observatories for gravitational waves (GWs)
- Initial detection, followed by astronomy of GWs
- Collaboration of ~40 institutions
- Funded by US National Science Foundation

International Network

Simultaneously detect signal (within msec)

- Detection confidence
- Locate sources
- Speed of propagation
- Polarization of GWs

- Sensitive to *h* ~ 10⁻²¹–10⁻²²
- Effective bandwidth of 40 Hz – 1 kHz
- Many sources are lower frequency
 - » Hulse-Taylor binaries
 - » Supermassive black holes

 LIGO should be sensitive to neutron star and black hole binary inspirals in the last 0.01-0.1 seconds before collision

LIGO

- Known to exist and to be emitting gravitational waves (Hulse-Taylor)
- Excellent opportunity to do astronomy

Matched Filtering

- Inspiral waveform can be modeled for different masses, positions, orbits
- ASIS Astrophysical Source Identification and Signatures

 Use matched filtering to correlate each modeled waveform to data

"Un-modeled" Bursts

- Unlike inspirals, look for waveforms for which we have no accurate prediction (i.e., asymmetric supernova)
- Time-frequency search look for connected regions of excess power
- Time domain search look for rapid amplitude increase over certain rise time

Unusual search due to a known nearby candidate
» PSR J1939+2134, neutron star rotating at 641.93 Hz, 3.6 kpc away

Look for signals at twice pulsar rotation frequency

Lack of signal puts upper limit on ellipticity of pulsar

Signal Recycling

By tuning the length of this cavity, we can enhance our sensitivity at a specific frequency. Adv. LIGO will include signal recycling, in which a mirror is added at the output, creating a cavity resonant for the beats between the laser frequency and a periodic signal.

- "Random" GW signal produced by a large number of weak, independent GW sources
- Detected by crosscorrelating the outputs of multiple interferometers
- Described by dimensionless spectrum Ω_{GW}(f):

$$\Omega_{gw}(f) = \frac{f}{\rho_c} \frac{d\rho_{gw}}{df}, \ \rho_c = \text{crit. density} = \frac{3c^2 H_0^2}{8\pi G}$$

LIGO Noise Curve

LIGO-G050233-00-Z

Ninth Texas-Mexico Conference on Astrophysics, 4/15/05

LIGO Timeline

- First science run completed September 2002
- Data analyses published in Phys. Rev. D69
 - » Inspirals pg. 122001
 - » Bursts pg. 102001
 - » Periodic pg. 082004
 - » Stochastic pg. 122004
- Fourth science run completed March 2005
 - » Analyses underway
- One year of integrated data taking to begin late fall 2005

 The LIGO project consists of 3 interferometers sensitive to GW strains of h ~ 10⁻²¹ from 40 Hz – 1 kHz

Expected GW sources include:

- » Binary inspirals of neutron stars/black holes
- » Un-modeled burst sources
- » Periodic sources (pulsars)
- » Stochastic backgrounds
- Full-time running at design sensitivity expected to begin late fall 2005