

Initial LIGO upgrade to 30 W: Implication for the Input Optics

UFLIGO Group

Major IO components and concerns at 30 W

- Electro-optic modulators
 - » Thermal lensing
 - » Degraded noise performance
 - » Long term damage?
- Mode cleaner
 - » Thermal lensing due to coating absorption
 - MC_REFL beam → MC WFS
 - How much of a problem?
 - Coating hot spots?
- Faraday isolator
 - » Degraded isolation
 - » Thermal lensing \rightarrow power dependent mode change into IFO
- Mode-matching telescope
 - » Probably no major concerns

Modulators I

• Current EOMs:

- » New Focus LiNbO₃
- » 2 x 2 mm aperture
- Thermal lensing at 30W in LiNbO₃
 - » Absorption ~ 0.1-0.5%
 - » $dn_x/dT \oplus dn_y/dT$
- Need new EOMs!

LiNbO₃ at 30W:

10 x 10 x 20 mm LiNbO₃ EOM - thermal lensing is: i) severe ii) position dependent

Modulators II

Advanced LIGO EOM development

- » Nonlinear crystal: RTP and RTA
 - 4 x 4 mm² aperture
- » Currently look at two EOM designs
 - Hybrid UF/New Focus
 - Home-made
- Summary of performance to date
 - » Bare crystals handle 95 W in 300 μ m spots
 - 400 hours of continuous testing
 - Negligible thermal lensing
 - » RFAM reasonably good
 - No worse than LIGO 1
 - Piezo-electric resonances in the 100s kHz regime
 - Fluctuations correlate with pump power

Modulators II

- Hybrid UF/New Focus RTP 'plug and play'
 - » Pricy \$5500/EOM, but could negotiate bulk discount
- Home-made
 - » Materials are cheap, but manpower needed to assemble and test EOMs and spares costs \$
 - » Better temperature stability
 - » Not as well characterized, but should be within the next year

Mode Cleaner

• Main issues

- » Coating absorption
 - Affects MC_REFL mode
 - Impact on MC WFS
- » 10X increase in intracavity power → 10X increase in MC frequency noise
 - Limiting noise source?
 - Assumes current PSL RIN
- » 10X increase in intracavity power → 1.2 x 10⁵ W/cm² on each mirror
- » Throughput
 - Plagues current MCs

30 W input, MC1 injection, 1.8 ppm coating loss

LIGO

L

30 W input, MC1 injection, no thermal lensing

Alternate MC geometry

LIGO

30 W input, MC2 injection, 1.8 ppm coating loss

- 10X increase in input power → 10X increase in MC frequency noise
 - » Limiting noise source?
 - » If so, is intensity stabilization able to handle this? 10X more power to PD
 - » Possible to live with higher δf and reallocate problem to controls or elsewhere?
- Long term performance at higher power
 - » Are the MCs getting worse with time?
 - Contamination?
 - » 10X increase in power → 10X speed up in degradation? 100X?
- Current H1 MC has low throughput (65%)
 - » Scatterer on MC mirror?
 - Serious negative implications for high power operation
 - » Change MC mirrors!

LIGO

Faraday Isolator I

• Fls currently different in (H1, L1) and H2

- » H1, L1 → initial FI, 10 mm aperture, 90% throughput, thermal beam drift on lock and unlock at low (2W) powers
- » H2 → new FI design, 20 mm aperture, low absorption TGG, 98% throughput, no beam drift, bench tested to 6W
- Advanced LIGO FI prototype tested
 - » Compensation of thermal birefringence and thermal lensing
 - » Predicted performance isolation > 40 dB at 100 W based on depolarization measurements
 - » Imperfect but reasonable thermal lensing compensation at 100 W
 - Should be fine for 30W

• Current H2 FI

LIGO

- » Isolation at 30 W would be reduced relative to current performance
 - How much??
 - Need to measure...
- » Thermal lensing at 6 W negligible
 - Evidence that calcite Brewster polarizers might lens at 30 W
 - Worst case 25% loss of TEM00,

LIGO R&D

mostly in focus change

Status of AdvLIGO Faraday Isolator

LIGO

Status of AdvLIGO Faraday Isolator

Status of AdvLIGO Faraday Isolator

- FR: Dual TGG crystal design + quartz compensator
- Thermal lens compensation
 - » KD*P –dn/dT material
- Isolation performance
 - » 31.5 dB
- Thermal Lens performance
 - ≈ λ/10 OPD across beam waist at 90
 W single pass
 - ≈ λ /30 OPD expected at 30 W
 - Negligible thermal lensing

Recommendations I

• EOMs

- » Need to be changed
 - Impact mode matching into MC
- » Simplest solution is to replace current EOMs with New Focus RTP version
- » Could have a homemade one ready on a year time scale
- Mode cleaner
 - » High power operation problematic for REFL beam
 - But is it really a problem?
 - Need some investigations
 - » Solution is to inject through MC2
 - Major surgery, requires getting new mirrors and swapping

Recommendations II

• Faraday Isolator

- » Current H2 design *may* work
 - Need to build another one and test it at 30 W
- » AdvLIGO design prototype will work
- Costs:
 - » \$50-60K for EOMs and spares
 - » \$40K 50K for FIs and spares
 - » \$75K for new MC mirrors (do we need to do this?)