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Heterodyne & homodyne readouts

Heterodyne: traditional RF modulation/demodulation
RF phase modulation of input beam
Lengths chosen to transmit first-order RF sideband(s) to anti-
symmetric output port with high efficiency

Initial LIGO: RF sidebands are in principal balanced at AS port
AdLIGO: with detuned RSE, one RF sideband is stronger than the 
other

RF sideband(s) serve as local oscillator to beat with GW-produced 
field

Signal: amplitude modulation of RF photocurrent

Homodyne: DC readout
Main laser field (carrier) serves as local oscillator

Signal: amplitude modulation of GW-band photocurrent
Two components of local oscillator, in DC readout: 

Field arising from loss differences in the arms
Field from intentional offset from dark fringe

Some linear 
component

No 
slope
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Why DC Readout at the 40m?
Homodyne detection (via a DC readout scheme) has been chosen as the 
readout scheme for AdLIGO.

DC Readout eliminates several sources of technical noise (mainly due to the RF 
sidebands): 

Oscillator phase noise 
Effects of  unstable recycling cavity.  
The arm-filtered carrier light will serve as a heavily stabilized local oscillator.  
Perfect spatial overlap of LO and GW signal at PD.

It also avoids NEW noise couplings in detuned RSE due to unbalanced RF 
sidebands at the dark port.
DC Readout has the potential for QND measurements, without major
modifications to the IFO.
The 40m is currently prototyping a suspended, power-recycled, 
detuned RSE optical configuration for AdLIGO.  A complete 
prototyping of the AdLIGO optical configuration, in our view, 
includes the readout method.  
We can also prototype innovations for LIGO I (see Rana’s talk).
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What will we learn?

We’re not likely to see any quantum effects, given our noise 
environment.  We may not even see any noise improvements.
The most important thing we will learn is : How to do it 

How to lock it?
How best to control the DARM offset?
What are the unforeseen noise sources associated with an in-vacuum OMC?
How do we make a good in-vac photodiode?  What unforeseen noise sources are 
associated with it?
We hope to discover any unforeseen pitfalls.

We will also perform as thorough an investigation as we can regarding 
noise couplings in detuned RSE, with both heterodyne and homodyne 
detection.

Parallel modeling and measurement studies.
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A little context
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The 40m Lab is currently not even close to being limited by fundamental noise sources.
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Making the DC local oscillator
Two components

Carrier field due to loss differences (not controllable?) 
Carrier field due to dark fringe offset (controllable)
An output mode cleaner should take care of the rest.

Loss mismatch component
Average arm round trip loss: 75 ppm
Difference between arms: 40 ppm
Output power due to mismatch: 40 µW

Detection angle, β
Tuned by adjusting fringe offset
Angle of GW is frequency dependent in detuned RSE
Homodyne angle of Buanonno & Chen?

Loss mismatch

fringe
offset β

LIGO I GW 
parallel to 
DC offset

Detuned RSE: 
GW signal gets f-
dependent phase 
shift in SRC
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DC Readout GW Transfer Functions

DC Readout GW 
Transfer Functions, 
using different 
amounts of DC 
offset 
This changes the 
‘Detection Angle’ as 
well as the amplitude 
of the LO.
We’ll look at a 19pm 
offset for reference.  
For AdLIGO, this will 
likely not be feasible.
Modeling done in 
FINESSE.
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Controlling DARM
I can think of 4 options to control an offset DARM:

1. Standard RF (PDH) control, with a digital 
offset.

2. A standard DC locking scheme, with an offset.
3. A wacky DC locking scheme, like we do with 

the arms in our lock acquisition.
4. A wackier scheme involving the difference of 

the Arm cavity powers.
The linearity of 2-4 is …questionable.
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DARM control signals
The Difference 
between the ARM 
powers gives a 
DARM signal!  This is 
an effect of the detuned 
signal cavity.

Unsurprisingly, the 
square root of the 
dark port power also 
gives a nice DARM 
signal in a certain 
region.
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DARM control signals, zoomed
A 19 picometer
offset is well into 
the linear regime 
of the AP power 
signal.  The LO 
power is about 
9mW (for 1W 
after the MC).
Note that the 
TRX-TRY signal 
has an offset due 
to the loss 
mismatch.
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But what happens to CARM?
Unsurprisingly, CARM gets a 
small offset too.  Ideally, 
CARM will have no offset; 
this isn’t realistic, as it 
depends exquisitely on the 
demodulation phase.
Effect on the CM servo?
Power at the BS is reduced 
by 3%
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The Output Mode Cleaner

We can use a 3 or 4-mirror OMC.
Off the shelf mirrors.
An easy spacer (Al?)
Cheap, quick, and easy to re-do.

Finesse ~ 500
In-vacuum, on a seismic stack.
Considerations:

Astigmatism, counter propagating modes, accidental HOM 
resonances, RF sideband suppression.
Measurement of AP beam structure.
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Controlling the OMC
OMC length signal: 

Dither-lock?
Should be simple; we’ll try this first.

PDH reflection?
There’s only one sideband, but it will still work.

Servo:
Will proceed with a simple analog servo, using a signal generator and a lock-
in amp.
Feedback filters can easily be analog or digital.  

Can use a modified PMC servo board for analog.
Can use spare ADC/DAC channels in our front end IO processor for digital.

PZT actuation
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The DC Detection diode
Ben Abbott has designed an 
aluminum stand to hold a bare 
photodiode, and verified that the 
block can radiate 100 mW
safely.
Electronic signal amplification 
will occur immediately outside 
the vacuum chamber.  We will 
be susceptible to any magnetic 
fields inside the chamber.
Another option is a diode in a can 
filled with an inert, RGA detectable 
gas; this will allow a similar 
electronic amplification stage to 
what we do now.
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OMC Beam Steering :
A preliminary layout is ready to go

Mike Smith has designed a 
compact, monolithic MMT, similar to 
our input MMT.  We’ll be using 
spherical mirrors.

from SRM

Existing in‐vac
seismically isolated 
optical table

The Diode

This will actually be the second
PZT steering mirror.  The first
mirror after the SRM will also
be a PZT steering mirror.

From SRM
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 

Quantify:
ISS requirements.

Just how bad is having the ISS pickoff after the Mach-Zehnder?
In-vac sensing?

Study MZ phase noise effects
PRC/SRC/MICH/DARM loop couplings
OMC length couplings

Ready for a review in mid/late April
How much do fluctuations in the loss mismatch ‘quadrature’
couple into the GW signal?
Sensing the OMC-input beam alignment?
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