Blade spring measurements and results

Ian Wilmut and Justin Greenhalgh on behalf of the Suspension group

G050101-00-K

Blade types

- Top (D040298)
 - Working Length 480, thickness 4.3, root width 95
- Middle (D040297)
 - Working Length 415, thickness 4.6, root width 59
- Bottom (D040296)
 - Working Length 635, thickness 4.2, root width 49

Blades and their behaviour

- For the controls prototype a total of 49 blades have been made.
 - 12 (4 of each type) at reduced spec (MF2), 37 (12 of each type + 1 extra) at full spec (MF1).
- All have been inspected and appropriately loaded, data has been collected and tabulated on all blades.
- There is significant variation in the final blades, this can be:-
 - Initial shape (tip height above the blade root)
 - Total deflection when loaded
- Cosmetically there is also considerable variation.

What was measured

- Thickness of blades along their length for a sample of blades, also root width, tip width and length.
 - 4 of each type from MF1; 2 of each type from MF2
- Undeflected shape on table, undeflected shape on BTF, deflection under load (and deflected tip location)
 - All blades
- Bounce mode and internal frequency
 - Which blades?

Data taken

- The following data were collected for each blade:
 - Unloaded tip height WRT horizontal
 - Loaded tip height WRT horizontal
 - Bounce frequency, and internal mode
 - On bench metrology
 - (additional measurements were taken to assess deflection in the measurement facility to remove it from the results)
- This allowed us to derive
 - Blade deflection under load
 - Hence blade stiffness
 - Final blade tip height for the design load
 - Hence angle to clamp blade WRT horizontal to get blade tip in the correct place.

Blade thickness, etc results

- Checked 12 (out of 37) MF1 blades and 6 (out of 12) MF2 blades.
- Root width, tip width, length.
 - Two minor infringements.
- Thickness along the length (8 points along the length)
 - Some minor infringements.
 - Little to choose between the suppliers.
 - MF2 marginally better in terms of SD on thickness.
 - Remember this. Tolerance on thickness was +/- 0.0004" which is about 0.25%. Since the error on stiffness goes with the cube of thickness we might expect to see a stiffness error of order 0.75%.

Shape of blade in use - 1

Tip too high (wrong initial shape or wrong stiffness)

As measured Straight clamp As installed "Sagging"

Shape of blade in use - 2

Tip too low (wrong initial shape or wrong stiffness)

Blade processing:

- Make blades
- Reject if
 - wrong stiffness or "not a spring"
 - too far out of shape (or possibly modify shape)
 - Other manufacturing errors
- Pair blades for use

Criteria for discarding blades

- Some blades may be geometrically in spec but be unsuitable for use in a suspension.
 - They would be unsuitable if they don't behave as a spring i.e. When a blade is loaded does it take a set?
- They may be unsuitable if:
 - The blades do not deflect the correct amount when loaded (wrong stiffness)
 - The flat blade falls more than x mm above or below the horizontal, i.e. the clamp variant is very large, forcing the blade to hog a lot. (bad combination of stiffness and initial shape).
- They may fall out side geometric spec but be worth using if:
 - The flat section of the blade is curved
- The bounce frequency is anomolous (any evidence for this?)

Criteria for accepting blades

- "Obvious, but wrong"
 - Stiffness, initial curvature
- "What's wanted"
 - Stiffness, tip height under load
 - Tip height under load is a function of initial curvature and stiffness
 - Subject to concerns about "hogging" and "sagging" as noted below.

With blades, what makes an ideal pair?

Some ideas about how we should pair blades

- Same deflected height (clamp variant).
- Same deflection (same stiffness)
- Same deflected height and same undeflected height (same stiffness & variant)
- 4. As 1, 2 or 3. + same bounce frequency
- 5. As 1, 2 or 3. + same internal mode

Blade Hogging

- Using "imperfect" blades will require the blade clamps to be angled.
 This will mean that the blades will hog, either up or down.
- The amount of hogging of a blade is directly related to the clamp variant, and can be calculated directly from the blade geometry.

Conclusions - Controls PType

- Total of 49 blades made
- Some rejected for manufacturing oddities
 - Interesting lessons learned here
 - flatness of root section
- Six pairs selected
- More pairs could have been found
- Why were the stiffnesses from MF2 so far out on some blades?

Conclusions - Noise Ptype 1

- Proposed approach homework
 - Establish limits on acceptable sagging/hogging; hence "variant"
 - (maybe try some "badly matched" blades on CP?)
 - Establish limits on acceptable error in stiffness (absolute) (matlab)
 - Establish limits on errors in pairing stiffness (M Barton/NAR and the 1.5%)
 - ? Establish limits on acceptable internal frequencies (how?)
 - Use existing results to adjust "alpha" value in design
 - Any smart ideas as to why some of the blades from MF2 were soft?

Conclusions - Noise Ptype 2

- Proposed approach manufacture & test
 - Make blades; measure; reject if outside limits above then pair.
 - Each SUS needs 2 pairs of each type (+spares)
 - N Ptype thus needs 4 pairs of each type + spares
 - Suggest 12 blades of each type (TBC) should be ordered to allow 4 pairs to be found
 - By this we mean 12 blades that conform to drawing
 - Allow material for at least 14 blades of each type

