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Flat-Top Beam Profile
Cavity Prototype: design and
preliminary tests

J. Agresti, E. D’Ambrosio, R. DeSalvo, J.M. Mackowsky,
M. Mantovani, A. Remillieux, B. Simoni, M. G. Tarallo, P. Willems
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Motivations for a flat-top beam:
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Total noise

Advanced-Ligo sensitivity

Dominated by test-masses thermoelastic
or coating thermal noises.

" Y e 1 Can we reduce the influence of

. thermal noise on the sensitivity
e 5 of the interferometer?
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Mirror Thermal Noise:

Thermoelastic noise Brownian noise

Mirror surface

Created by stochastic flow of Due to all forms of
heat within the test mass background
l dissipations within a

material (impurities,
dislocations of atoms,
etc..)

Fluctuating hot spots and
cold spots inside the mirror

!

Expansion in the hot spots )
and contraction in the cold
spots creating fluctuating

bumps and valleys on the /
mirror’s surface

Surface fluctuations

Interferometer output: proportional
to the test mass average surface

position, sampled according to the
Aspen 2005 beam'’s intensity profile. 3




Indicative thermal noise trends
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Exact results require accurate information on material properties and
finite size effects must be taken in account.
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Mirror surface averaging

Gaussian beam Mirror surface

fluctuations

¥y Aslarge as
possible (within

diffraction loss constraint).

The sampling distribution
changes rapidly following

the beam power profile

~

Flat Top beam

Larger-radius, flat-top
beam will better average
over the mirror surface.
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Expected gain in sensitivity ~2 & 3




Diffraction prevents the creation of a beam with a rectangular power
profile...but we can build a nearly optimal flat-top beam:

Flat-top beam

Gaussian beam

Power height
| A Mirror profile
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*The mirror shapes match the phase front of the beams.
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Sampling ability comparison between the two beams

(same diffraction losses, Adv-LIGO mirror size)

Sampled area Advantage Ratio Sampled area
S (ro )z O'Ogsmif RFIat—top/Gaussian =4 S (ro )z 0'368mir
S (r90% )z 0'018”1" RFIat—top/Gaussian =20 S 0% )z O'ZOSmir
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Flat top beam FP cavity prototype

* Necessity to verify the behavior of the flat top beams and
study their generation and control before its possible
application to GW interferometers

We have built a small FP cavity: a scaled
version of Advanced LIGO which could contain
gaussian and non-gaussian beams

2L,

Mirror size constrain = d,:T szdL L
AdL
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We will investigate the
modes structure and
characterize the
sensitivity to
perturbations when non
Gaussian beams are
supported inside the
cavity.
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Misalignment produces
coupling between modes
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Design of the test cavity : Rigid cavity suspended
under vacuum

Flat folding
mirror

Thermal shield

INVAR rod
Vacuum pipe
Flat input
mirror
MH mirror folded cavity length [, =7.3m
VVIOI ~ 87Kg
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Optical and mechanical design:

- Injection Gaussian beam designed to optimally couple to the cavity.

* Required finesse ‘F = 100 to suppress Gaussian remnants in the cavity.

Length stability: ~ 5 nm

* INVAR rods (low thermal expansion coefficient).
« Stabilized temperature.
* Vacuum eliminates atmospheric fluctuations of optical length.

* Ground vibrations can excite resonance in our interferometer structure;:
suspension from wires and Geometrical-Anti-Spring blades.

Mirror's size constrained by beam shape and diffraction losses
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height (um)

Our Mexican Hat |
mirror: Nok:n
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radius (cm)

Diameter set by diffraction 02 04 06 08 1 1.
losses and technical e
difficulties... S0 g
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Diffraction losses of ~ 1ppm e 15 i | | .
requiresmirror’sradius>1 cm. | | | | .
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‘ LMA’s Technique to build Mexican Hat mirrors

Ton source

’  Rough Shape Deposition:
Silica target Mask Subs.tratc Robot . . .
. Fixed Rotating ® « Coating the desired Mexican Hat
\ profile using a pre-shaped mask
N[ « Achievable precision ~60nm Peak
to Valley

ﬁ

Sputtered atoms %

Measurement of the wavefront

' Phase Shift B
Interferometer

 Corrective coating: ton source

- Measurement of the Silica target Mask  Substrate  Robot
achieved shape 3\ Fixed Moving X,Y

e Coating thickness \
controlled with a precision e I

<10 nm. i

Maximum slope
~ 500nm/mm
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Cavity Vacuum & Thermal Shield

Suspension view

Suspension wires
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Spacer plate
INVAR rod



Cavity Suspens ons‘ V~ 0.6 Hz

GAS spring

I | 1™~ wires
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First tests

e Output power feedback
setting up

 First cavity lock with
spherical end mirror

e High order modes
characterization

e Upgrading suspension
design and PZTs drivers
for angular corrections
and control
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Output beam profile
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Next Steps

 VVacuum operations and tests with the spherical end mirror
e Servo loop implementation (compensation and angular control)
e Turn on the “One Hertz Seismic Attenuation System” for the

vertical suspensions

« Switch to Mexican-Hat mirror as soon as available
 Characterization of Flat-top beam modes and misalignment effects

Next possible
developments
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Flat topped beam inside a
nearly-concentric cavity:

same power distribution
over the mirrors but less
sensitive to misalignment.

Overcome the technical
limitation on the slope
of the coating... not
impossible.
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