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• The grating pulse compressor/expander

• Idea: white light cavities from two parallel gratings

• It doesn’t work!

• Phase shift by gratings

Question 1: What is the (wavelength dependent) phase

change arising from diffraction by a grating?

Question 2: What effect occurs when a grating is moved

parallel to its surface?

Question 3: What are the implications for the use of

gratings in some advanced GW detector?
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The grating pulse compressor/expander
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Add mirrors at each end: Fabry-Perot cavity
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Condition for equal geometrical paths

• We want (for a range of wavelengths λ)

Φ(λ)

2π
= M =

L(λ)

λ
.

• This leads to the condition

dΦ

dλ
= 0 or

dL(λ)

dλ
=

L(λ)

λ

• The optimized length is

L(λ) = L0 +
D[1 + sinα sinβ(λ)]

cosβ(λ)
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Were this true ...

one could incorporate these gratings into the arms of a km-scale

interferometer and get better high frequency performance (or

turn up the finesse, and get greater sensitivity).
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So we tried it

• Fabry Perot with 2 gratings: No significant gain in bandwidth.

• Were the gratings displacing the beams as expected? Yes.
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• Near equal-arm Michelson with gratings in one arm.

Expected: rapid change of interference with laser wavelength.

Observed: none.
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Mach-Zehnder experiments

Laser is a 1.06 µm diode laser, with ∼ 7 GHz tunability.
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Wavelength dependence of Mach Zehnder Signal

• “gr” and “no gr” — calculations based on ruler measurements

of the optical paths in the MZ, and the computed L(λ) for

these dimensions.

• For “no gr” we considered the gratings to be replaced by

mirrors oriented to reflect the beam in the correct direction.

• “meas” — observed for a 2.5 GHz sweep of the laser wavelength.
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Phased and confused
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Yanbei’s solution

• Gratings bestow a phase factor on the light of

eikG(x) =
∑
m

Cmeimgx ≈ e−igx and e−ig(x−xo)

where g = 2π/d, m = −1, C−1 = 1, and xo is the offset of

the second grating wrt the first.
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• Then

E1,in = Eoe
ik(x sinα−y cosα) (1)

E1,out = Eoe
i[(k sinα−g)x+ky cosβ] (2)

E2,out = Eoe
i[k(x sinα+D cosβ)+gxo] (3)

Eem = Eoe
i[k{x sinα−(y−D) cosα+D cosβ}+gxo].

(4)
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Phase

• The phase Φ(ω, x, y) is

Φ =
ω

c
[x sinα − (y − D) cosα + D cosβ] + gxo

so that

∂Φ

∂ω
=

1

c
[x sinα − (y − D) cosα] +

D

c

(
cosβ − ω

∂β

∂ω
sinβ

)
.

• Using ∂β
∂ω from the grating equation and the (wavelength-

dependent) geometric path length L (ω) from the first grating

(at the origin) to the end mirror, we find

∂Φ

∂ω
=

L (ω)

c
,

making it clear that the variation of phase with frequency

cannot be set to zero.

• This forumla for ∂Φ
∂ω is familiar to short-pulse laser physicists

as the group delay.
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Measuring the phase
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Motion of the grating parallel to its surface
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Motion of the grating perpendicular to its surface
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Implications for km-length interferometers

• Diffraction gratings are being considered for use as beamsplitters

in future detectors.

• Scanning the beam across the grating ⇔ scanning the grating

across the beam.

• Motion of ∼ 1 µm → 2π phase shift.

• For a mirror 4 km from the grating, angular motion of

1×10−10 radians will cause 2π phase shift.

• To split a fringe by 10−10/
√

Hz, requires 1×10−22 rad/
√

Hz

in in-band angular stability. (!)

• To make the power (in a simple Michelson) at the dark port

less than 200 mW∗ requires 6×10−12 rad in angular stability.

∗1% of 200 W input
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Summary

• The phase of light reflected by or transmitted through a

diffraction grating cannot be deduced from Bragg’s law and

geometry alone.

• That derivation neglects the curious result that the absolute

phase is proportional to the distance along the grating face

at which the light strikes.
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Angular requirements

• Angular motion of mirror directly translates into the phase
of the beam.

• SRD says:

dx = 10−20 m/
√

Hz

• This can be written as a phase

dφ = dx
2π

λ

• The allowed shift of the beam spot on the grating is then

dh = dφ
d

2π

• The requirement on the angular beam stability (taking into
account that the arm cavities dewiggle the beam by the
finesse F ) is

dΘ = dh cosα
F

L
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or

dΘ = 1 × 10−22 rad/
√

Hz(
d

0.8 µ
)(

1µ

λ
)(

cosα

0.5
)(

4 km

L
)(

F

100
)

Note that for a 40 cm mirror, 1×10−22 rad corresponds to

displacements of the mirror edges by 2×10−23 m.
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