Gravitational Waves From Neutron & Strange-quark Stars

Supported by the National Science Foundation http://www.ligo.caltech.edu

Gregory Mendell

LIGO Hanford Observatory

- A billion tons per teaspoon: the history of neutron stars.
- The discovery of pulsars and identification with NS.
- Are NS really strangequark stars?
- GWs from NS and SQS.
- What will we learn?

LIGO

The Neutron Star Idea

- Chandrasekhar
 1931: white dwarf
 stars will collapse if
 M > 1.4 solar masses.
 Then what?
- Baade & Zwicky
 1934: suggest SN
 form NS.
- Oppenheimer & Volkoff 1939: work out NS models.

(http://www.jb.man.ac.uk/~pul
 sar/tutorial/tut/tut.html;
 Jodrell Bank Tutorial)

http://www.aao.gov.au/images/captions/aat050.html Anglo-Australian Observatory, photo by David Malin.

Discovery of Pulsars

- Bell notes "scruff" on chart in 1967.
- Close up reveals the first pulsar (pulsating radio source) with P = 1.337 s.
- Rises & sets with the stars: source is extraterrestrial.
- LGM?

• More pulsars discovered indicating pulsars are natural phenomena.

Figure 2: Discovery observations of the first pulsar. (a) The first recording of PSR 1919+21; the signal resembled the radio interference also seen on this chart. (b) Fast chart recording showing individual pulses as downward deflections of the trace. From Lyne & Graham-Smith 1990 [23].

Pulsars = Neutron Stars

- Gold 1968: pulsars are rotating neutron stars.
 - orbital motion
 - •oscillation
 - rotation
- From the Sung-shih

(Chinese Astronomical Treatise): "On the 1st year of the Chi-ho reign period, 5th month, chi-chou (day) [1054 AD], a guest star appeared...south-east of Tian-kuan [Aldebaran].(http://super.colorado.edu/~a str1020/sung.html)

http://antwrp.gsfc.nasa.gov/apod/ap991122.html

Crab Nebula: FORS Team, 8.2-meter VLT, ESO

Pulsars Seen and Heard

(Vela Pulsar)

http://www.jb.m
an.ac.uk/~pulsa
r/Education/Sou
nds/sounds.html

Jodrell Bank Observatory,

Dept. of Physics & Astronomy,

The University of Manchester

Ligo Why Neutron Stars?

Masses ~ 1.4 Solar Masses

S. E. Thorsett and D. Chanrabarty, astro-ph/9803260

- Fastest pulsar spins 642 times per seconds; radius < 74 km.
- Brightness and distance suggest radii ~ 5-15 km.

www.physik.unimuenchen.de/sektion/suessmann/ astro/cool/

The back of the envelope please...

Don't take this the wrong way...

1.4 Solar Masses $1.4(1.99 \times 10^{33} \text{ g})$

10 km Sphere $4/3\pi(10^6 \text{ cm})^3$

Average density = 6.7×10^{14} g/cm³

 $1.67 \times 10^{-24} \text{ g}$ Mass neutron

Volume neutron $4/3 \pi (10^{-13} \text{ cm})^3$

 $= 4.0 \times 10^{14}$ g/cm³ (billion tons/teaspoon)

... but parts of you are as dense as a neutron star.

 $\mu_{\rm p} + \mu_{\rm e} = \mu_{\rm n}$

 $n_p = n_e$

 $p + e = n + v_e$ (inverse beta and beta decay)

(beta equilibrium)

(charge neutrality)

Seen: SN 1987A!

LIGO-G050005-00-W

Nuclear density: 95% n, 5% p & e

More on Pulsars

COSMIC LIGHTHOUSES with terra-gauss magnetic fields!

D. Page

http://www.astroscu.unam.mx/neutrones/home.html

Respun in x-ray binary to 642 Hz! In theory up to 2 kHz.

http://online.itp.ucsb.edu/online/neustars00rmode/kaspi/oh/05.html; Vicky Kaspi McGill University, Montreal Canada

http://www.astroscu.unam.mx/neutrones/home.html

http://astrosun2.astro.cornell.edu/academics/courses/astro

Getting dense...

- Fermi Temp: 10¹² K.
- NS born at 10¹¹ K, cools below 10⁹ K within a year; form superfluid neutrons, superconducting protons.
- Cools to 10⁶ K after 10⁷ yrs; glows with x-rays.

D. Page
http://www.astroscu.unam.mx/n
eutrones/home.html

..and strange...

http://chandra.harvard.edu/resources/illustrations/ neutronstars_4.html; NASA/CXC/SAO

...and finally, have a slice of neutron-quark layered cake! ...and neutronlayered cake!

NORMAN K. GLENDENNING

Nuclear Science Division and Institute for Nuclear and Particle Astrophysics Lawrence Berkeley Laboratory University of California Berkeley, California 94720

Strange Stars in the News

Continuous Periodic Gravitational-Wave Sources

Mountain mass & height: εMR²

Low-mass x-ray binary: balance GW torque with accretion torque T.

A. Vecchio on behalf of the LIGO Scientific Collaboration: GR17 – 22nd July, 2004

LIGO

What might we learn?

- Mountain Heights: is 1 mm typical? If greater than 1 cm then stars that are even "stranger than strange" exist!?
- Wobble Size: are superfluid tornados free to move?
- "Good Vibrations": apply astro-seismology.
- Torques: GWs may control the spinup, spindown, & spin cycles of these stars.

Summary

- LIGO: a new window on the universe.
- There is good evidence that stars with a density of a billion tons per teaspoon do exist.
- GWs provide new and unique information about neutron & strange-quark stars
- YOU can use Einstein@Home to search LIGO data for GWs from these or even more exotic undiscovered ultra-dense objects!
- Expect the unexpected?!