

Results of the LIGO-TAMA S2/DT8 Joint Bursts Search

Patrick Sutton

LIGO Laboratory, Caltech, for the

LIGO-TAMA Joint Working Group

Outline

- Background
- LIGO-TAMA Network
- Analysis Overview
- Analysis Results
- Remaining Tasks and Outlook

LIGO-TAMA Joint Search

- GWDAW 7, 2002: LIGO & TAMA sign MOU for joint analysis of S1/DT6 or S2/DT8 data for gravitational-wave transients.
 - » Seek optimal ways to combine LIGO and TAMA for best science.
 - » Develop infrastructure for collaboration.
- Post-S2: Began joint bursts search in S2/DT8 data, focusing on high frequencies (700-2000Hz).
 - Complementary to LIGO-only S2 search: 100-1100Hz
 - » Inspiral & GRB 030329 analyses also in progress.

Joint Searches

 Advantages & disadvantages depend on how analysis is performed. For a straightforward coincidence search, these include:

Pros:

- » Reduction in false alarm rate due to extra coincidence (~1/century)
- » Increase in total usable observation time
- » Extract sky direction, polarization information (3+ sites)

Cons:

- » Sensitivity limited by weaker instruments, misalignments.
- » Technical & logistic challenges: different data quality and characterization issues, different trigger generation, long-distance coordination.

LIGO-TAMA Network

LIGO-TAMA Network

Best *joint* sensitivity near minimum of noise envelope

Focus on [700,2000]Hz

Near 700Hz: expect sensitivity limited by TAMA

Near 2000Hz: expect similar sensitivities

S2/DT8 Data Sets

Reviewers: These are the observation times before data quality cuts, playground removal, etc.

H1	74%	1040hr
H2	58%	818hr
L1	37%	523hr
T1	81%	1150hr

H1-H2-L1-T1	18%	250hr	
H1-H2-L1- n T1	4%	62hr	
H1-H2- n L1-T1	23%	325hr	
total	45%	637hr	

nL1 ≡ L1 not operating, **n**T1 ≡ T1 not operating

- LIGO-TAMA has double the total usable data set of LIGO alone
 - » Better chance of "getting lucky" in a search
 - » Cut rate upper limits in half
 - » Cost: some loss in efficiency (minor effect)
- Response: Analyze all H1-H2-(L1 or T1) data
 - » H1-L1-T1, H2-L1-T1: small amount of data, much higher false rate. Ignore.

Analysis Pipeline

Analysis: Novel Bits

- No bulk sharing of data; only triggers exchanged:
 - » Compare LIGO-TFClusters triggers to TAMA-Power triggers
 - » No r-statistic test with TAMA
- 3 independent data sets:
 - » Must derive single upper limit from 3 independent experiments.
- TAMA-LIGO 4X search has several interesting features:
 - » Extra time lags allow much more accurate background estimates
 - LIGO 2-site network = 47 lags in (-115s,+115s)
 - LIGO-TAMA 3-site network = 47^2 = 2209 lags in (-115s,+115s).
 - » Not yet explored (S3+?): Extra non-aligned site with long baseline: exploit for sky direction? polarization information?

Event Generation

- LIGO: TFClusters+BurstDSO algorithm:
 - » Prefiltering with high-pass, linear-predictor error filters.
 - » Construct time-frequency spectrogram, trigger on clusters of pixels which are "loud" compared to average noise level.
 - » Central time, duration, frequency, bandwith, SNR (not used) estimated by BurstDSO; keep only triggers overlapping [700,2000]Hz.
- TAMA: Excess-Power algorithm:
 - » Prefiltering with line-removal filter.
 - » Segment data, sum total power in a fixed set of frequency bins (which follow the noise floor) in the range [230, 2500]Hz. Trigger if SNR>3.
 - » Central time, duration defined by highest SNR time and the duration above threshold.
 - » Vetoes:
 - glitches in auxiliary channel (light intensity in power recycling cavity)
 - "Rayleigh-statistic" type Gaussianity test

Simulations

- One set of MDC frames has been exchanged: "SG13"
 - » sine-Gaussians
 - = 8.9
 - » $f_0 = \{700, 849, 1053, 1304, 1615, 2000\}$ Hz
 - » isotropic sky distribution
 - » random linear polarization
 - » total 16880 injections, distributed over LIGO 3X times (H1-H2-L1-T1 and H1-H2-L1-nT1)

Tuning Philosophy

- Use single tuning for all three data sets.
- Tune for best efficiency at each false rate.
 - » Select TFClusters black-pixel probabilities & Power SNR threshold to match efficiencies across detectors
- Select multi-ETG rate & r-statistic threshold for << 1 event from background.
 - » beta = 3 (efficiencies not affected)

Efficiency vs False Rate

Efficiency vs False Rate

From SG13 simulations

Effective coincidence windows:

20ms (LIGO-LIGO) 43ms (LIGO-TAMA)

Network characteristics with r-statistic (rates are upper limits)

Full Data Set Results

- Full data set box has been opened and (almost) final upper limits have been calculated.
 - » No surviving coincidences (after r-statistic) for any of the network combinations.
 - » Rate upper limit of 0.13/day.
 - » $h_{rss}^{50\%} = 1.5x10^{-19}Hz^{-1/2}$ averaged over networks, analysis band.

Network Efficiency

Upper Limits

Preliminary: Must include effect of vetoes (2% loss in T1 efficiency), calibration uncertainties (~10%?), veto dead-time (2%)

Full data set, including N before/after the R-Statistic:

Network	T (Ms)	N	R _{bck} (nHz)	N_bck	R _{90%} (1/day)	h _{50%} (Hz ^{-1/2})
H1-H2-L1-T1	0.60	0/0	<0.80	<5e-4	0.35	2.1x10 ⁻¹⁹
H1-H2- n L1-T1	0.94	1/0	<24	<0.023	0.22	1.3x10 ⁻¹⁹
H1-H2-L1- n T1	0.18	0/0	<124	<0.023	1.13	0.91x10 ⁻¹⁹
Combined	1.7	1/0	<27	<0.046	0.12*	1.5x10 ⁻¹⁹

^{*}Treating all 3 data sets as one experiment with $N_{bck}=0$.

Preliminary: Must include effect of R vs h Upper vetoes (2% loss in T1 efficiency), calibration uncertainties calibration uncertainties (~10%?), veto dead-time (2%)

Preliminary: Must include effect of R vs h Upper vetoes (2% loss in T1 efficiency), calibration uncertainties (~10%?), veto dead-time (2%)

Summary & Outlook

- TAMA-LIGO joint search for GWBs in S2 is in final stages.
 - » High-frequency search complementary to LIGO-only search at low frequencies.
- Two main parts:
 - » 4X: very low false rate (~few/century)
 - » 3X: lots of additional observation time
- No GWB candidates survived pipeline.
 - » Rate upper limit of 0.13/day.
 - » $h_{rss}^{50\%} = 1.5 \times 10^{-19} Hz^{-1/2}$ averaged over networks, analysis band.

Summary & Outlook

Remaining issues:

- » Extra data to be analysed: TAMA has provided ~10% more triggers, observation time from end of DT8 (missed in exchange due to script bug).
- » Livetime to be finalized (account for TAMA veto deadtime of few %)
- » Include calibration uncertainty in efficiencies.
- » Expect change in upper limits <10%.
- » Review
- Paper draft in preparation.
 - » Preliminary draft circulated to burst group, circulate to LSC in December
 - » Hope to present results at GWDAW.
- S3?
 - Exploring value of joint S3 search with LIGO, TAMA, GEO representatives.