

Advanced LIGO

Daniel Sigg, for the LIGO Scientific Collaboration Hanford, August 24, 2004

LIGO Scientific Collaboration

Motivation

- Build a detector with assured detectability of known sources
 Interesting astrophysics
 - Reach matters
- LIGO is nearing its design sensitivity

- New ideas and new technologies are available
 - Reasonable extrapolations of detector physics and technologies
 - Realizable, practical and reliable instrument

LIGO Scientific Collaboration

G040421-00-I

Fundamental Noise Sources

LIGO Scientific Collaboration

How will it get there

Seismic noise

- Active isolation system
- Mirrors suspended as fourth (!!) stage of quadruple pendulums
- Thermal noise
 - > Suspension \rightarrow fused quartz; ribbons
 - Test mass higher mechanical Q material, e.g. sapphire; more massive (40 kg)
- Optical noise
 - ➢ Input laser power → increase to ~200 W
 - Optimize interferometer response
 signal recycling
- Platform for all currently envisaged enhancements
 - Mesa beams
 - Squeezed light interferometers
 - Newtonian background suppression

Pre-stabilized Laser

Require the maximum power compatible with optical materials

- ➤ 180W 1064nm Nd:YAG
- Baseline design with end-pumped rod oscillator, injection locked to an NPRO
- > 2004: Prototyping well advanced slave at 170 W

LIGO

Seismic Isolation Strategy

Seismic Isolation

External hydraulic actuators

- Large dynamic range (+/-1mm)
- Low frequency bandwidth (below GW detection band)
- Reduce rms motion to allow sensing system at higher frequencies to remain linear
- Two in-vacuum stages of active controlled platforms
 - Active suppression of noise in 0.1 to 30 Hz band
 - Provide a quiet platform (2 x10⁻¹³ m/√ Hz @ 10Hz) from which to suspend core optics

LIGO Scientific Colla

In Vacuum Active Isolation: First Performance

Suspensions

- Control noise is filtered by placing sensors and actuators higher up in the chain
- Controls hierarchy: Global control signals are applied at all stages of the multiple pendulum
- Forces are applied from a reaction pendulum to avoid re-introduction of noise
- Double suspension are used in GEO600

Test Masses / Core Optics

- Central mechanical and optical element in the detector
 - > 830 kW; <1ppm loss; <20ppm scatter
 - ➤ 2x10⁸ Q; 40 kg; 32 cm Ø
- Sapphire is the baseline test mass/core optic material
 - Low mechanical loss, high density, high thermal conductivity
- Fused silica fibers
 - ~10⁴x lower loss than steel wire
 - Ribbon geometry

 more compliant
 along optical axis
- Fused silica remains a viable fallback option
- Coating thermal noise is significant

Full-size Advanced LIGO sapphire substrate

LIGO

Active Thermal Compensation

c Collaboration

LIGO

Comparison

Parameter	LIGO I	Adv LIGO
Equivalent strain noise, minimum	3x10 ⁻²³ /rtHz	2x10 ⁻²⁴ /rtHz
Neutron star binary inspiral range	20 Mpc	300 Mpc
Stochastic background sens.	3x10 -6	1.5-5x10 ⁻⁹
Interferometer configuration	Power-recycled MI w/ FP arm cavities	LIGO I, plus signal recycling
Laser power at interferometer input	6 W	125 W
Test masses	Fused silica, 11 kg	Sapphire, 40 kg
Seismic wall frequency	40 Hz	10 Hz
Beam size	3.6/4.4 cm	6.0 cm
Test mass Q	Few million	200 million
Suspension fiber Q	Few thousand	~30 million

LIGO Scientific Collaboration

Upgrade of all three interferometers

□ In discovery phase, tune all three to broadband curve

- 3 interferometers nearly doubles the event rate over 2 interferometers
- Improves non-Gaussian statistics
- Commissioning on other LHO IFO while observing with LHO-LLO pair
- □ In observation phase, the same IFO configuration can be tuned to increase low or high frequency sensitivity
 - > sub-micron shift in the operating point of one mirror suffices
 - ➤ third IFO could e.g.,
 - observe with a narrow-band VIRGO
 - focus alone on a known-frequency periodic source
 - focus on a narrow frequency band associated with a coalescence, or BH ringing of an inspiral detected by other two IFOs

Baseline plan

□ Initial LIGO observation at design sensitivity 2004–2008

- Significant observation within LIGO Observatory
- Significant networked observation with GEO, VIRGO, TAMA

□ Structured R&D program to develop technologies

- Conceptual design developed by LSC in 1998
- Cooperative Agreement carries R&D to Final Design

□ Planning on first funding in October 2006

- Test mass material, seismic isolation fabrication
- > Prepare a 'stock' of equipment for minimum downtime, rapid installation
- □ Start installation in 2009
 - Baseline is a staggered installation, Livingston and then Hanford
- □ First instrument starting to observe in 2011
- Optimism for networked observation with other '2nd generation' instruments

Advanced LIGO

LIGO

Universität Hannover

(1040421-00-1)

Initial instruments, data helping to establish the field of interferometric GW detection

- Advanced LIGO promises exciting astrophysics
- Substantial progress in R&D, design
- Still a few good problems to solve

WASHINGTON STATE

INIVERSITY

- A broad community effort, international support
- Advanced LIGO will play an important role in leading the field to maturity

'he Phweise of the Universe

NORTHWESTERN

UNIVERSITY

PENNSTATE

THE UNIVERSITY C

STERN AUSTRALI

PPORC

UNIVERSITY

GLASGOW

DED NO