

## AdvLIGO Modecleaner Design and Testing Status

#### Mark Barton

LIGO LAB: CIT: H. Armandula, J. Heefner, J. Romie, C. Torrie, P. Willems. MIT: P. Fritschel, M. MacInnis, K. Mason, R. Mittleman, D. Ottaway, L. Ruet, D. Shoemaker. LHO: B. Bland, D. Cook. LLO: J. Hanson, J. Kern, H. Overmier, G. Traylor. Other: L. Williams GEO600: GLASGOW: G. Cagnoli, C. Cantley, D. Crooks, E. Elliffe, A. Heptonstall, J. Hough, R. Jones, M. Perreur-Lloyd, M. Plissi, D. Robertson, K. Strain, P. Sneddon, H. Ward GLASGOW/STANFORD: N. Robertson, S. Rowan UNIVERSITAT HANNOVER: S. Gossler, H. Lueck

LSC Meeting, LHO, 8/19/04

### Requirements

- Design requirements for seismic platform + suspension (from T010007-01):
- Longitudinal noise (all sources):  $3x10^{-17}$  m/ $\sqrt{Hz}$  at 10 Hz, falling to  $3x10^{-19}$  m/ $\sqrt{Hz}$  at 100 Hz (based on coupling to frequency noise)
- Pitch noise: 3x10<sup>-14</sup> rad/√Hz at 10 Hz, falling to 3x10<sup>-16</sup> rad/√Hz at 100 Hz (assumes ±1 mm beam centering)
- Yaw noise: 3x10<sup>-14</sup> rad/√Hz at 10 Hz, falling to 3x10<sup>-16</sup> rad/√Hz at 100 Hz (assumes ±1 mm beam centering)
- Vertical noise:  $3x10^{-14}$  m/Hz at 10 Hz, falling to  $3x10^{-15}$  m/Hz at 100 Hz (assumes 0.001 coupling to longitudinal)
- Transverse noise:  $3x10^{-14}$  m/Hz at 10 Hz, falling to  $3x10^{-15}$  m/Hz at 100 Hz (assumes 0.001 coupling to longitudinal)

## Conceptual Design

- Conceptual design given in T010103-03
- Based on GEO triple design
  - 2 maraging steel blade springs (on structure)
  - 2 wires
  - T-shaped upper mass (3 kg)
  - four maraging steel blade springs
  - four wires
  - fused silica intermediate mass
  - four fused silica fibres
  - fused silica optic (15 cm x 7.5 cm, 3 kg)





## **Analysis**

- Matlab model by (Torrie et al.)
  - » Quick to run
  - » Models springs indirectly by adding their compliance to that of the wires
  - » Does not allow for asymmetries
- Mathematica model (Barton)
  - » More general but slower
  - » Useful as a double-check and to investigate effects of asymmetries



#### **Normal Modes**

- 18 normal modes:
  - » all with anti-node at top mass for controllability
  - » all well below measurement band except for vertical and roll modes at 19.8 and 28.5 Hz

| N  | f_ref (Hz) type |       |
|----|-----------------|-------|
| 1  | 0.670382        | х     |
| 2  | 0.677404        | У     |
| 3  | 0.849997        | pitch |
| 4  | 1.08049         | yaw   |
| 5  | 1.11008         | z     |
| 6  | 1.5153          | У     |
| 7  | 1.51551         | X     |
| 8  | 2.03232         | yaw   |
| 9  | 2.09333         | roll  |
| 10 | 2.27611         | roll  |
| 11 | 2.64008         | Х     |
| 12 | 2.7755          | yaw   |
| 13 | 3.55017         | pitch |
| 14 | 3.57592         | roll  |
| 15 | 3.91252         | z     |
| 16 | 4.0387          | pitch |
| 17 | 19.8397         | Z     |
| 18 | 28.5362         | roll  |
| •  |                 |       |



# Controls Prototype Purpose/Limitations

- For test of mechanical behaviour, assembly techniques, local control
  - » 6 "hybrid" OSEMs (LIGO-I sensor, larger magnet/coil) on upper mass for local control (analog electronics by GEO)
- Limitations
  - » Preliminary structure design (does not yet meet 150 Hz internal mode requirement)
  - » Dummy masses for I.M. and optic (same mass, MOI)
  - » Wires instead of fibres between I.M. and optic (no attempt to match elasticities -> frequencies of highest frequency vertical and roll modes are unrepresentative)
  - » 4 LIGO-I OSEMs on each of I.M. and optic for monitoring position/pitch/ yaw, and as a stand-in for future low-noise actuators for global control



## Controls Prototype Structure



#### • Footprint:

- » 220 mm x 400 mm x 890 mm
- Mass
  - » Suspended 9 kg
  - » Non-suspended 18 kg
  - » Bare structure 11 kg
- Centre of gravity
  - » 365 mm from bottom

## **Upper Mass**





#### "Tablecloth"





## Hybrid OSEM

- Shadow sensor identical to that in LIGO-I OSEM
- Larger coil to accommodate larger magnet for greater force





#### **Electronics**

- dSpace digital controller (http://www.dspaceinc.com/)
  - » PPC processor in expansion box, linked to Wintel PC by optical fibre
  - » control algorithm programmed in Simulink on PC
  - » user-interface programmed in dSpace ControlDesk on PC
- Drivers for 6 hybrid OSEMs on upper mass by GEO
- Drivers for 8 LIGO-I OSEMs on lower masses and other analog electronics by CDS





## Control Algorithm

- Simple diagonalizing controller
  - » output from 6 hybrid OSEMs converted to x, y, z, yaw, pitch, roll
  - » standard GEO control law (velocity damping with rolloff above ≈10 Hz) in all DOFs
  - » de-diagonalization to individual OSEM drive signals



## Controller UI (ControlDesk)



# Mode Identification

- Mode identification measurements done in air at Caltech
- Shaker in swept-sine mode was applied to strategic points on structure to excite preferentially in x, y, yaw etc





#### Mode Identification Results

- Theory:
  - » Mathematica model
  - » As-built parameters
  - » One fudge: set elasticity of "fibres" to reproduce highest vertical frequency
- Very good agreement (<10%) in other 17 frequencies

| N  | f (as-built) | f (meas) | type  |
|----|--------------|----------|-------|
| 1  | 0.667414     | 0.66     | Х     |
| 2  | 0.673777     | 0.671    | у     |
| 3  | 1.05552      | 1.172    | pitch |
| 4  | 1.08668      | 1.094    | yaw   |
| 5  | 1.1875       | 1.125    | Z     |
| 6  | 1.53096      | 1.516    | у     |
| 7  | 1.53112      | 1.518    | Х     |
| 8  | 1.95707      | 1.742    | yaw   |
| 9  | 2.22731      | 2.141    | roll  |
| 10 | 2.74927      | 2.672    | roll  |
| 11 | 2.82618      | 2.813    | Х     |
| 12 | 3.53868      | 3.563    | yaw   |
| 13 | 3.61966      | 3.75     | pitch |
| 14 | 3.76754      | 3.578    | roll  |
| 15 | 4.33279      | 4.047    | Z     |
| 16 | 4.84859      | 4.813    | pitch |
| 17 | 34.5714      | 34.875   | Z     |
| 18 | 49.1598      | 49.875   | roll  |



## Damping Response

- Preliminary damping results in air at Caltech
- Good damping in all modes



#### Installation

- Structure is manhandled onto bed of forklift and raised to level of HAM optical table
- "Teflon highway" is used to slide structure into position
- Structure was tipped onto one edge to allow removal of highway need a safer procedure





### In Position

 After installation and alignment in LASTI





#### **Transfer Function Results**

- First transfer function results by Laurent Ruet at LASTI
- All combinations of OSEM actuator input to OSEM sensor output





#### **Future**

- Continued testing at LASTI
  - » Use HEPI as shake table to do true displacement transfer functions
- Design team focussed on quad
- Structure needs beefing up to meet (or more closely approach) 150 Hz structure resonance goal
- Noise prototype with fused silica masses, fibres