Squeezed Light at Sideband Frequencies below 100 kHz

Roman Schnabel, A. Franzen, W. P. Bowen,

N. Große, P. K. Lam,

H. Vahlbruch, S. Chelkowski, H.-A. Bachor, K. Danzmann.

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Institut für Atom- und Molekülphysik, Universität Hannover

Quantum Noise of a Conventional MI

Roman Schnabel

Optical Spring SR Interferometers

Roman Schnabel

Roman Schnabel

Squeezed Light from an OPA

Roman Schnabel

Optical Parametric Amplification (OPA)

Optical Parametric Amplification

OPA Amplitude Noise Transfer Function

Amplitude quadratures in frequency space

$$\hat{X}_{\rm sqz}^{+} = \left\{ \sqrt{4\kappa_{\rm ic}\kappa_{\rm oc}}\hat{X}_{\rm ic}^{+} + \sqrt{4\kappa_{\rm loss}\kappa_{\rm oc}}\hat{X}_{\rm loss}^{+} \right. \\ \left. + (2\kappa_{\rm oc} - i\Omega - \kappa + g)\hat{X}_{\rm oc}^{+} \right\} / (i\Omega + \kappa - g)$$

Roman Schnabel

Scheme 9

Locked Amplitude Squeezed Light

Roman Schnabel

OPA Amplitude Noise Transfer Function

$$\hat{X}_{\rm sqz}^{+} = \left\{ \sqrt{4\kappa_{\rm ic}\kappa_{\rm oc}}\hat{X}_{\rm ic}^{+} + \sqrt{4\kappa_{\rm loss}\kappa_{\rm oc}}\hat{X}_{\rm loss}^{+} \right. \\ \left. + (2\kappa_{\rm oc} - i\Omega - \kappa + g)\hat{X}_{\rm oc}^{+} \right\} / (i\Omega + \kappa - g)$$

Roman Schnabel

Scheme 11

Roman Schnabel

Scheme 12

Roman Schnabel

Amplitude noise variance: $V_{\rm out}^+ = \langle (\hat{X}_{\rm out}^+)^2 \rangle - \langle \hat{X}_{\rm out}^+ \rangle^2$ inside OPA cavity bandwidth:

 $|\Omega| << |\kappa|$

Roman Schnabel

Variance 14

$$V_{\text{out}}^{+} = \begin{cases} V_{\text{src}}^{+} \left[\sqrt{(1-\varepsilon_{1})\varepsilon_{2}} \sqrt{4\kappa_{\text{ic}}\kappa_{\text{oc}}/\kappa^{2}} \right]^{2} \\ -\sqrt{\varepsilon_{1}(1-\varepsilon_{2})}(1-g/\kappa) \right]^{2} \\ +V_{\text{vac}}^{+} \left[\sqrt{\varepsilon_{1}\varepsilon_{2}} \sqrt{4\kappa_{\text{ic}}\kappa_{\text{oc}}/\kappa^{2}} \\ +\sqrt{(1-\varepsilon_{1})(1-\varepsilon_{2})}(1-g/\kappa) \right]^{2} \\ +V_{\text{oc}}^{+} \left[\sqrt{\varepsilon_{2}} \left(2\kappa_{\text{oc}}/\kappa - 1 + g/\kappa \right) \right]^{2} \\ +V_{\text{loss}}^{+} \left[\sqrt{\varepsilon_{2}} \sqrt{4\kappa_{\text{loss}}\kappa_{\text{oc}}/\kappa^{2}} \right]^{2} \end{cases} / (1-g/\kappa)^{2}$$

Roman Schnabel

Variance 15

$$\rightarrow \quad \varepsilon_1^+ = 1 - \left[1 + \frac{\varepsilon_2}{(1 - \varepsilon_2)} \frac{4\kappa_{\rm ic}\kappa_{\rm oc}/\kappa^2}{(1 - g/\kappa)^2} \right]^{-1}$$

$$V_{\rm out}^+(\varepsilon_1 = \varepsilon_1^+) = V_{\rm sqzvac}^+ = 1 + \varepsilon_2 \frac{4\kappa_{\rm oc}g}{(\kappa - g)^2}$$

Roman Schnabel

16

The Hannover Squeezing Experiment

Roman Schnabel

Squeezing Spectra

Roman Schnabel

Squeezing Spectrum at Low Frequencies

Bowen *et al.* (2002)

Roman Schnabel

Summary

• Squeezed states below 100 kHz were demonstrated (carrier light at 1064 nm).

- We used a single OPA scheme employing 600 mW laser power in total.
- Further experiments will aim for acoustic frequencies.

Roman Schnabel