LIGO A very first glance to S3 injections (vs S2)

Lindy Blackburn LIGO-MIT

Ballmer, Bayer, Cadonati, Chatterji, Katsavounidis, Rawlins, Zanolin

A first E10/S3 analysis by

Julien Sylvestre, Alan Weinstein reported at Nov LSC

AJW NOV2003 TALK

LIGO

- Do the Burst EventTriggerGenerators detect the injections? Where is the detection threshold? Does detection efficiency fall for high amplitude injections? (Does IFO lose lock?)
- Exercise all ETGs under development
- Quantitative comparisons of ETG-reconstructed with injected values of h_{rss}, f₀, t_{start}
- Quantitative comparisons of ETG response to hardware and software injections with identical parameters
 - » We do SW injections with high statistics, to evaluate efficiency; real comparisons between SW and HW validates the SW efficiency evaluations
- Quantitative test of calibration information
- Monitor stability of IFO & ETG response over time

S2/S3 H1 Hardware Injections

- Compare Q=9 Sine-Gaussian Hardware Injections in H1 between S2 and S3.
- Using Dyadic Haar Wavelet detection algorithm
 - » Multiresolution time-frequency decomposition based on scaling in powers of two.
 - » Amplitude of pixels in each scale are Gaussian distributed (assuming white noise).
 - » Average background amplitude, $<A_{BG, scale}> = std(\{A_{PIX, scale}\})$
 - » Normalized pixel amplitude, $A_N = A_{PIX} / \langle A_{BG, scale} \rangle$
 - » Threshold on normalized pixel amplitude, $|A_N| > 6$
 - » Clustered False Rate ~1 Hz for S2 Playground.

LIGO-G0200XX-00-M

LIGO Scientific Collaboration

Efficiency Curves for Q=9 S.G.

S2 (57 Injections in H1)

S3 (72 Injections in H1)

LIGO-G0200XX-00-M

LIGO Scientific Collaboration

1

S2/S3 Hardware Inj: Conclusions

- There is substantial improvement in the detectability in sine-gaussian hardware injections from S2 to S3 as expected from the corresponding improvements in detector noise.
- Detectability improves by a factor of 11.2 at 153 Hz, 11.7 at 235 Hz, 4.4 at 361 Hz, and 2.2 at 1304 Hz
- Glitch-rates and non-Gaussian noise are not factored into this analysis, which would impact the optimal threshold of any ETG tuned for a specific false-rate.