

# Thermal Compensation Installation at LIGO HANFORD OBSERVATORY

Dave Ottaway, Ken Mason, Stefan Ballmer- MIT Mike Smith, Phil Willems- Caltech

Cheryl Vorvick, Gerardo Moreno, Daniel Sigg-LHO

GR17, July 18-23, 2004, Dublin Ireland

LIGO Laboratory

## Initial LIGO Thermal Compensation Concept



LIGO

•Imaging target onto the TM limits the effect of diffraction spreading

•Modeling suggests a centering tolerance of 10 mm required to maintain good correction

**LIGO Laboratory** 



## Thermal Compensation Implementation



LIGO Laboratory



## **Thermal Compensator Layout**



## LIGO Thermal Compensation Heating Pattern



#### Annulus Mask

#### Central Heat Mask



- •Intensity variations across annulus image due to small laser spot size
- •Modeling suggests that this should not be an issue
- •Projection optics work well

•AOM distortion above 3W causes intensity centroid shift (these images all taken at 1 Watt CO<sub>2</sub> laser power exiting AOM) *LIGO Laboratory* LIGO-G040172-00-Z





LIGO Laboratory



## PRM Results – Mode Images at AS Port (both ITMs heated)

#### RF sidebands-



no heating

**RF** sidebands-



30 mW



60 mW



90 mW Carrier



120 mW



150 mW



180 mW

LIGO Laboratory

(thru unlocked IFO) LIGO-G040172-00-Z

### **PRM Results – Sideband Buildup**





## PRM Optical Gain during heating



•Maximum gain at ~90 mW central heating

•Same heating optimizes RF sideband buildup

•Same heating makes RF sideband mode resemble carrier mode



## Full Interferometer Results



- A. Interferometer locked at 0.8 Watt
- B. 90 mW central heating applied to both ITMs
- C. Central heating reduced
- D. Maximum power with 45 mW heating
- ?? No change in
  AS\_DC throughout



## Summary of Results

| State                                         | SPOB | GSB  |
|-----------------------------------------------|------|------|
| State 2 cold                                  | 85   | 7.0  |
| State 2 hot (90 mW CO <sub>2</sub> )          | 152  | 12.5 |
| State 2 max $(tRM / (1 - rRM rM rITM))^2$     |      | 14   |
| State 4 cold                                  | 160  | 13   |
| State 4 warm (0.8W input)                     | 190  | 16   |
| State 4 hot (2.3W input, no TCS)              | 240  | 20   |
| State 4 hot (0.8W input, 45mW CO2)            | 320  | 26.5 |
| State 4 max (tRM / (1 - rRM rM)) <sup>2</sup> |      | 30   |



## **PRM Asymmetric Heating**



## PRM Asymmetric Heating – Optical Gain



LIGO Laboratory



### **Issues to Resolve**

- Different behavior of ITMx and ITMy
- Optimum compensation occurs with 90mW central heating, yet models predict less than half this
  - » Tests show 90% of  $CO_2$  laser power is absorbed by ITM
  - » Misalignment of CO<sub>2</sub> laser beam cannot explain discrepancy